

JOB NO.: TCS00864/16

CEDD SERVICE CONTRACT NO. NTE/07/2016 ENVIRONMENTAL TEAM FOR DEVELOPMENT OF ANDERSON ROAD QUARRY SITE – SITE FORMATION AND ASSOCIATED INFRASTRUCTURE WORKS

MONTHLY ENVIRONMENTAL MONITORING AND AUDIT REPORT (JULY 2022)

PREPARED FOR CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT (CEDD)

Date	Reference No.	Prepared By	Certified By
2 September 2022	TCS00864/16/600/R0579v2	Anh	An

Nicola Hon (Environmental Consultant) Tam Tak Wing (Environmental Team Leader)

Version	Date	Remarks
1	12 August 2022	First submission
2	2 September 2022	Amended against IEC's comments

EXECUTIVE SUMMARY

- ES01 Action-United Environmental Services & Consulting (AUES) has been awarded the Civil Engineering and Development Department (CEDD) Service Contract No. NTE/07/2016 Environmental Team for Development of Anderson Road Quarry Site Site Formation and Associated Infrastructure Works (hereinafter called "the Service Contract") on 15 December 2016. The commencement date of the Service Contract is from December 2016 and the Contract Period is 70 months.
- ES02 The Services under the Service Contract is to provide environmental monitoring and audit (EM&A) services for the Works Contracts pursuant to the requirement of Environmental Team (ET) under the EM&A manual to ensure that the environmental performance of the Works Contracts comply with the requirement specified in the EM&A Manual and EIA Report of Development of Anderson Road Quarry and other relevant statutory requirements.
- ES03 To facilitate the project management and implementation, the Service Contract has been divided to three CEDD contracts including Contract NE/2016/01 (Contract 1), Contract NE/2016/05 (Contract 2) and Contract NE/2017/03 (Contract 3). As advised by the Resident Engineer (RE), the commencement date of Contract 1 was 21 December 2016 and the major construction works has been commenced on 12 April 2017. The commencement date of Contract 2 was 31 March 2017 and the major construction activities have been commenced on 2 May 2017. Furthermore, Contract 3 was commenced on 31 May 2018 and the major construction activities works was commenced in November 2018. The EM&A programme under the Project was commenced on 12 April 2017 pursuant to the requirement under the EM&A manual. In addition, variation order for extend service scope to E5, E6, E7 and C10 under Contract ED/2019/02 (Contract 5) was issued by AECOM. The commencement date of Contract 5 was on 30 March 2021. Moreover, variation order for extend service under Contract ED/2020/02 (Contract 4) was issued by AECOM. The commencement date of Contract 4 was on 27 September 2021.
- ES04 This is the 64th monthly EM&A report presenting the monitoring results and inspection findings for the period from 1 to 31 July 2022 (hereinafter 'the Reporting Period').

ENVIRONMENTAL MONITORING AND AUDIT ACTIVITIES

ES05 Environmental monitoring activities under the EM&A programme in the Reporting Period are summarized in the following table.

Environmental	Environmental Monitoring	Reporting Period	
Aspect	Parameters / Inspection	Number of Active Monitoring Locations	Total Occasions
Air Quality	1-hour TSP	6	90
Air Quality	24-hour TSP	4	20
Construction Noise	L _{eq(30min)} Daytime for Contract NE/2016/01	7	28
Construction Noise	L _{eq(30min)} Daytime for Contract NE/2017/03	3	12

BREACH OF ACTION AND LIMIT (A/L) LEVELS

ES06 No exceedance of air quality was recorded in the Reporting Period. For construction noise monitoring, no Limit Level exceedance was recorded and no noise complaint (which triggered Action Level) was received in the reporting period. The environmental exceedance, NOE issued and investigation of exceedance are summarized in the following table.

Environmentel	Monitoring	Action	T imit	Event & Action		Action
Environmental Aspect	Monitoring Parameters	Action Level	Lovol	NOE Issued	Investigation	Corrective Actions
Air Quality	1-hour TSP	0	0	0	NA	NA

Environmentel	Manitarina	Action	T insi4	Event & Action			
Environmental Aspect	Monitoring Parameters	Action Level		NOE Issued	Investigation	Corrective Actions	
	24-hour TSP	0	0	0	NA	NA	
Construction Noise	L _{eq(30min)} Daytime	0	0	0	NA	NA	

ENVIRONMENTAL COMPLAINT

ES07 In the reporting period, no environmental complaint was received.

NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

ES08 No environmental summons or successful prosecutions for the Project were recorded in the Reporting Period.

REPORTING CHANGE

ES09 There is no reporting change in the Reporting Period.

SITE INSPECTION

- ES10 In this Reporting Period, joint site inspections to evaluate the site environmental performance for *Contract 1* were carried out by the RE, ET and Contractor on 7, 12, 19 and 26 July 2022 in which IEC joined the site inspection with SSEMC on 7 July 2022. No non-compliance was noted during the site inspection.
- ES11 In this Reporting Period, joint site inspections to evaluate the site environmental performance for *Contract 2* were carried out by the RE, ET and Contractor on 6, 13, 20 and 23 July 2022 in which IEC joined the site inspection on 27 July 2022. No non-compliance was noted during the site inspection.
- ES12 In this Reporting Period, joint site inspections to evaluate the site environmental performance for *Contract 3* were carried out by the RE, ET and Contractor on 8, 15, 22 and 29 July 2022 in which IEC joined the site inspection with SSEMC on 15 July 2022. No non-compliance was noted during the site inspection.
- ES13 In this Reporting Period, joint site inspections to evaluate the site environmental performance for *Contract 4* were carried out by the RE, ET and Contractor on 6, 13, 19 and 27 July 2022 in which IEC joined the site inspection with SSEMC on 19 July 2022. No non-compliance was noted during the site inspection.
- ES14 In this Reporting Period, joint site inspections to evaluate the site environmental performance for *Contract 5* were carried out by the RE, ET and Contractor on 7, 14, 21 and 28 July 2022 in which IEC joined the site inspection with SSEMC on 21 July 2022. No non-compliance was noted during the site inspection.

FUTURE KEY ISSUES

- ES15 During wet season, the Contractors are reminded to pay special attention on water quality mitigation measures and should fully implement the measures as recommended in the EM&A Manual, in particular to prevent muddy water or other water pollutants from site surface overflow to public area should be properly maintained.
- ES16 Since construction site is highly visible to the resident at nearby estates, the Contractors should pay special attention on potential environmental impact generated by the site activities and adhere implement adequate air quality and noise mitigation measures as far as practicable to reduce the impact to the public.

- ES17 Construction noise is one of the key environmental issues during construction work of the Project. Noise mitigation measures such as using quiet plants and noise barriers shall be implemented where practicable according to the EM&A manual.
- ES18 In addition, the Contractors should ensure all effluent discharge shall be fulfilled the Technical Memorandum of Effluent Discharged into Drainage and Sewerage Systems, inland and Coastal Waters criteria or relevant discharge license requirement.

Table of Contents

1.	INTRODUCTION	1
	1.1 PROJECT BACKGROUND	1
	1.2 REPORT STRUCTURE	1
2.	PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS	3
	2.1 CONSTRUCTION CONTRACT PACKAGING	3
	2.2 PROJECT ORGANIZATION	4
	2.3 CONSTRUCTION PROGRESS	4
3.	SUMMARY OF IMPACT MONITORING REQUIREMENTS	10
	3.1 GENERAL	10
	3.2 MONITORING PARAMETERS	10
	3.3 MONITORING LOCATIONS	10
	3.4 MONITORING FREQUENCY AND PERIOD	12
	3.5 MONITORING EQUIPMENT	13
	3.6 MONITORING METHODOLOGY	13
	3.7 DERIVATION OF ACTION/LIMIT (A/L) LEVELS	15
	3.8 DATA MANAGEMENT AND DATA QA/QC CONTROL	16
4.	AIR QUALITY MONITORING	18
	4.1 GENERAL	18
	4.2 RESULTS OF AIR QUALITY MONITORING	18
5.	CONSTRUCTION NOISE MONITORING	20
	5.1 GENERAL	20
	5.2 NOISE MONITORING RESULTS IN REPORTING MONTH	20
6.	WASTE MANAGEMENT	22
	6.1 GENERAL WASTE MANAGEMENT	22
	6.2 RECORDS OF WASTE QUANTITIES	22
7.	SITE INSPECTION	24
	7.1 REQUIREMENTS	24
	7.2 FINDINGS / DEFICIENCIES DURING THE REPORTING MONTH	24
8.	ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE	27
	8.1 ENVIRONMENTAL COMPLAINT, SUMMONS AND PROSECUTION	27
9.	IMPLEMENTATION STATUS OF MITIGATION MEASURES	29
	9.1 GENERAL REQUIREMENTS	29
	9.2 TENTATIVE CONSTRUCTION ACTIVITIES IN THE COMING MONTH	29
	9.3 KEY ISSUES FOR THE COMING MONTH	31
10.	CONCLUSIONS AND RECOMMENDATIONS	32
	10.1 CONCLUSIONS	32
	10.2 RECOMMENDATIONS	32

LIST OF TABLES

TABLE 2-1	STATUS OF ENVIRONMENTAL LICENSES AND PERMITS OF THE CONTRACT 1
TABLE 2-2	STATUS OF ENVIRONMENTAL LICENSES AND PERMITS OF THE CONTRACT 2
TABLE 2-3	STATUS OF ENVIRONMENTAL LICENSES AND PERMITS OF THE CONTRACT 3
TABLE 2-4	STATUS OF ENVIRONMENTAL LICENSES AND PERMITS OF THE CONTRACT 4
TABLE 2-5	STATUS OF ENVIRONMENTAL LICENSES AND PERMITS OF THE CONTRACT 5
TABLE 3-1	SUMMARY OF EM&A REQUIREMENTS
TABLE 3-2	IMPACT MONITORING STATIONS - AIR QUALITY
TABLE 3-3	IMPACT MONITORING STATIONS - CONSTRUCTION NOISE
TABLE 3-4	ADDITIONAL IMPACT MONITORING STATIONS – CONSTRUCTION NOISE
TABLE 3-5	AIR QUALITY MONITORING EQUIPMENT
TABLE 3-6	CONSTRUCTION NOISE MONITORING EQUIPMENT
TABLE 3-7	ACTION AND LIMIT LEVELS FOR AIR QUALITY MONITORING
TABLE 3-8	ACTION AND LIMIT LEVELS FOR CONSTRUCTION NOISE
TABLE 4-1	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS (AMS-1)
TABLE 4-2	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS (AMS-2)
TABLE 4-3	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS (AMS-3)
TABLE 4-4	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS (AMS-5)
TABLE 4-5	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS (AMS-6)
TABLE 4-6	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS (AMS-7)
TABLE 5-1	SUMMARY OF CONSTRUCTION NOISE MONITORING RESULTS
TABLE 5-1a	SUMMARY OF CONSTRUCTION NOISE MONITORING RESULTS
TABLE 5-2	SUMMARY OF CONSTRUCTION NOISE MONITORING RESULTS
TABLE 6-1	SUMMARY OF QUANTITIES OF INERT C&D MATERIALS
TABLE 6-2	SUMMARY OF QUANTITIES OF C&D WASTES
TABLE 7-1	SITE OBSERVATIONS OF CONTRACT 1
TABLE 7-2	SITE OBSERVATIONS OF CONTRACT 2
TABLE 7-3	SITE OBSERVATIONS OF CONTRACT 3
TABLE 7-4	SITE OBSERVATIONS OF CONTRACT 4
TABLE 7-5	SITE OBSERVATIONS OF CONTRACT 5
TABLE 8-1	STATISTICAL SUMMARY OF ENVIRONMENTAL COMPLAINTS
TABLE 8-2	STATISTICAL SUMMARY OF ENVIRONMENTAL SUMMONS
TABLE 8-3	STATISTICAL SUMMARY OF ENVIRONMENTAL PROSECUTION
TABLE 9-1	ENVIRONMENTAL MITIGATION MEASURES
LIST OF APPE	<u>ENDICES</u>
APPENDIX A	LAYOUT PLAN OF THE PROJECT
APPENDIX B	PROJECT ORGANIZATION STRUCTURE
APPENDIX C	THREE-MONTHS ROLLING CONSTRUCTION PROGRAMME
APPENDIX D	MONITORING LOCATIONS FOR IMPACT MONITORING
Appendix E	CALIBRATION CERTIFICATE OF MONITORING EQUIPMENT AND HOKLAS-ACCREDITATION CERTIFICATE OF THE TESTING LABORATORY
APPENDIX F	EVENT AND ACTION PLAN

- APPENDIX G IMPACT MONITORING SCHEDULE
- APPENDIX H DATABASE OF MONITORING RESULT
- APPENDIX I GRAPHICAL PLOTS FOR MONITORING RESULT

APPENDIX J	METEOROLOGICAL DATA
APPENDIX K	WASTE FLOW TABLE
APPENDIX L	IMPLEMENTATION SCHEDULE FOR ENVIRONMENTAL MITIGATION MEASURES
APPENDIX M	COMPLAINT LOG
APPENDIX N	IMPLEMENTATION STATUS FOR WATER QUALITY MITIGATION MEASURES

1

INTRODUCTION

1.1 PROJECT BACKGROUND

- 1.1.1 Action-United Environmental Services & Consulting (hereinafter referred as "AUES") has been awarded the CEDD Service Contract No. NTE/07/2016 Environmental Team for Development of Anderson Road Quarry Site – Site Formation and Associated Infrastructure Works (hereinafter called "the Service Contract") on 15 December 2016. The commencement date of the Service Contract was December 2016 and the Contract Period is 70 months.
- 1.1.2 The Services under the Service Contract is to provide environmental monitoring and audit (EM&A) services for the Works Contracts pursuant to the requirement of Environmental Team (ET) under the EM&A manual to ensure that the environmental performance of the Works Contracts comply with the requirement specified in the EM&A Manual and Environmental Impact Assessment (EIA) Report of Development of Anderson Road Quarry and other relevant statutory requirements.
- 1.1.3 Development of Anderson Road Quarry is to provide land and the associated infrastructures for the proposed land used at the existing Anderson Road Quarry Site at the North-eastern of East Kowloon according to the final Recommended Outline Development Plan (hereinafter named as the Project Works).
- 1.1.4 To facilitate the project management and implementation, the Service Contract has been divided to three CEDD contracts including Contract NE/2016/01 (Contract 1), Contract NE/2016/05 (Contract 2) and Contract NE/2017/03 (Contract 3). As advised by the Resident Engineer (RE), the commencement date of Contract 1 was 21 December 2016 and the major construction works has been commenced on 12 April 2017. The commencement date of Contract 2 was 31 March 2017 and the major construction activities have been commenced on 2 May 2017. Furthermore, Contract 3 was commenced on 31 May 2018 and the major construction activities works was commenced in November 2018. The EM&A programme under the Project was commenced on 12 April 2017 pursuant to the requirement under the EM&A manual. In addition, variation order for extend service scope to E5, E6, E7 and C10 under Contract 5 was on 30 March 2021. Moreover, variation order for extend service under Contract ED/2020/02 (Contract 4) was issued by AECOM. The commencement date of Contract 4 was on 27 September 2021.
- 1.1.5 According to the Approved EM&A Manual, air quality and noise monitoring are required to be monitored during the construction phase of the Project. As part of the EM&A program, baseline monitoring is required to determine the ambient environmental conditions. Baseline monitoring including air quality and noise conducted between *January* and *April 2019* at all designated monitoring locations were before construction work commencement. Furthermore, the Baseline Monitoring Report which verified by the Independent Environmental Checker (hereinafter referred as "the IEC") has been submitted to Environmental Protection Department (EPD) on *9 May 2017* for endorsement.
- 1.1.6 This is the 64th monthly EM&A report presenting the monitoring results and inspection findings for the period from 1 to 31 July 2022 (hereinafter referred as "Reporting Period").

1.2 1.2 REPORT STRUCTURE

- 1.2.1 The monthly EM&A Report is structured into the following sections:-
 - Section 1IntroductionSection 2Project Organization and Construction ProgressSection 3Summary of Impact Monitoring RequirementsSection 4Air Quality MonitoringSection 5Construction Noise Monitoring

Section 6	Waste Management
Section 7	Site Inspections
Section 8	Environmental Complaints and Non-Compliance
Section 9	Implementation Status of Mitigation Measures
Section 10	Conclusions and Recommendations

2. PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS

2.1 CONSTRUCTION CONTRACT PACKAGING

2.1.1 To facilitate the project management and implementation, the Project was divided by 5 works contracts as described in following. The details of each contract are summarized below and the delineation of each contract is shown in *Appendix A*.

Contract 1 (Contract No. NE/2016/01)

- 2.1.2 Commencement date of Contract 1 was in late December 2016 and the major scope of work of Contract 1 is listed below:
 - Formation of about 40 hectares (ha) of land platforms at the ARQ site and the associated geotechnical works;
 - Road works including construction of approximately 3-kilometer long vehicular roads, footpaths, cycle tracks, an approximately 130-meter long underpass at the southern end an a public transport terminus at the northern end at the ARQ site;
 - Provision of and improvement to water supply, drainage and sewerage systems as well as landscaping works; and
 - Construction of proposed subway structures and lift tower structures of pedestrian connectivity facilities.

Contract 2 (Contract No. NE/2016/05)

- 2.1.3 Commencement date of Contract 2 was 31 March 2017 and the major Scope of Work of the Contract 2 is listed below:
 - (i) Construction of the following pedestrian connectivity facilities with covered elevated walkways, covered at grad walkways, escalators, life towers with associate staircase and lifts:-
 - (a) Linking Hiu Kwong street with Hiu Ming Street (E1)
 - (b) Linking the proposed "Footbridge Link at Sau Ming Road" with Hiu Ming Street (E2, C1 and E3)
 - (c) Linking the proposed bus-to-bus interchange at Tseung Kwan O Tunnel Toll Plaza with Lin Tak Road (E12)
 - (ii) Construction of bus-to-bus interchange (BBI) at Tseung Kwan O Tunnel Toll Plaza;
 - (iii) Associated landscape works;
 - (iv) Construction of green routes connecting to Jordan Valley Park and Choi Wing Road; and
 - (v) Slope improvement works in the vicinity of Po Lam Road South and other associated works.

Contract 3 (Contract No. NE/2017/03)

- 2.1.4 The commencement date of Contract 3 is on 31 May 2018 and the major Scope of Work of the Contract 3 is listed below:
 - (i) Site formation and road works in the following sections:-
 - (a) at junction of Clear Water Bay Road (CWBR) and On Sau Road constructed under the Development at Anderson Road (DAR) project including the provision of U-turn facility and noise mitigation measures (RIW1);
 - (b) at New Clear Water Bay Road (NCWBR) near Shun Lee Tsuen Road including the road widening works at NCWBR, modification of existing subway structure and provision of noise mitigation measures (RIW2); and
 - (c) at the junction of Lin Tak Road and Sau Mau Ping Road, construction of flyover above Tseung Kwan O Road, provision of loading and unloading bays along Lin Tak Road and noise mitigation measures (RIW3).
 - (ii) construction of the following pedestrian connectivity facilities with covered elevated walkways, escalators and lift towers with associated staircases and lifts:-

- (a) linking Anderson Road Quarry site with the DAR Site (except the works covered under Contract 1) (System A and System B);
- (b) linking Hiu Ming Street with Hiu Yuk Path (E8); and
- (c) linking the proposed bus-bus interchange at Tseung Kwan O Tunnel Toll Plaza with Sau Mau Ping Road (E11).
- (iii) Associated landscape works.

Contract 4 (Contract No. ED/2020/02)

- 2.1.5 The commencement date of Contract 4 is on 27 September 2021 and the major Scope of Work of the Contract 4 is listed below:
 - Construction of hard landscaping and other ancillary works (e.g. paver footpath, planter walls, benches, lighting etc.);
 - Construction of soft landscaping works;
 - Lighting, irrigation, electrical and mechanical engineering works within the landscaping area;
 - Construction of landscape deck; and
 - Electrical and mechanical works for underground water treatment facilities and pumping system for Regional Open Space and Artificial Flood Attenuation Lake.

Contract 5 (Contract No. ED/2019/02)

- 2.1.6 The commencement date of Contract 5 is on 30 March 2021 and the major Scope of Work of the Contract 5 is listed below:
 - Construction of two-way escalator link between Sau Mau Ping Road and the existing footbridge to Po Tat Estate;
 - Construction of two-way escalator link between Sau Mau Ping South Estate and the existing footbridge to Sau Mau Ping Road;
 - Construction of footbridge, 3m, clear width, with and about 20m high lift tower between Hiu Kwong Street and the podium of Sau Ming House, Sau Mau Ping Estate;
 - Construction of footbridge, 3m clear width, with an about 40m high lift tower between Sau Mau Ping Road and the podium of Po Tat Estate; and
 - Ancillary works including associated civil, geotechnical, structural, electrical and mechanical engineering and landscaping works.

2.2 **PROJECT ORGANIZATION**

2.2.1 The project organization and contact details for Contracts 1, 2, 3, 4 and 5 are shown in *Appendix B*.

2.3 CONSTRUCTION PROGRESS

2.3.1 The 3-month rolling construction programme for Contracts 1, 2, 3, 4 and 5 are shown in *Appendix C*. The major construction activities conducted in the Reporting Period are summarized in below.

Contract 1 (NE/2016/01)

Fresh Water Pumping Station:

- Pumping Station E&M Works.
- Draw pits and cabling works

Salt Water Reservoir:

- Salt water Reservoir E&M works
- Draw pits and cabling works

Fresh Water Reservoir:

- Rock trench excavation for watermain and utilities along WSD access road complete.
- Pipe laying along WSD access road complete.
- Concreting of pipe plinths and staircase for downpipe from reservoir to PTT was completed. Downpipe installation from ~210mPD to 250mPD completed.
- Downpipe installation from PTT to Reservoir complete.

RWS Access Road & External Works:

- CLP Power supply duct
- Road Works& Fencing

Pedestrian Connection System A&B:

- Backfill, E&M, T&C and Lift installation at System B
- E&M and BS works, ABWF Works and Backfill lift tower at System A

Underpass Tunnel:

- Erection and installation of the VE Panel sub-frame in progress and 95% complete.
- 3.1.3.3 Construction of mass concrete wall in underpass complete 260m/260m.
- Painting of the 1st, 2nd & 3rd layer on lining structure complete.

Road L4 (RWA18, Noise Barrier, RWA12, utilities & Road Works):

- Storm drain & manhole M35-4 to S007C, R426 to M35-4 BD and R429 to M35-4BD complete, Gully of S002 to S007B & R426 to R429 complete.
- Construction of DN 450 Sewage Pipe from existing manhole to B223 complete, Manhole B223 to B229a complete
- Laying of wearing course of flexible pavement at CH100 to CH130 complete.
- K1 kerb installation at CH100 to CH130 complete.

Road Works L5, L1 east (between Junction L3&L5):

- Road L1 east part (L5 toward PC system)
- Road L1 east part 3 (Junction L3 toward L5)
- Works for USRT
- Road Works

Hiking Trail connecting to Wison Trail(Portion B5):

Construction works at Hiking Trail

Contract 2 (NE/2016/05)

- Temporary Traffic Arrangement (TTA)
- Mass Concrete construction
- Formwork and Falsework installation and dismantling
- Lift Installation and lift Tower Construction
- Rebar fixing

Contract 3 (NE/2017/03)

Pedestrian Connectivity Facility E8 (PC-E8)

• Touch-up outstanding works are in progress.

Pedestrian Connectivity Facility E11 (PC-E11)

- ABWF works and E&M works at LT2 & ST2 are in-progress.
- Backfilling works at PC6 area is in-progress.
- ABWF works and E&M works at LT1 & ST1 are in-progress.
- ABWF work and E&M works inside the footbridge steel frame are in-progress.

Pedestrian Connectivity Facilities Systems A (PC-SYA)

- ABWF works and E&M works at LT1, LT2 & ST1 are in-progress.
- Erect steel works inside RC structure is in-progress.
- Erect footbridge steel frame is in-progress.

Pedestrian Connectivity Facilities Systems B (PC-SYB)

- RC works at SyB-LT1 & ST1 is in-progress.
- Erect footbridge steel frame is in-progress.
- Install sheet-pile and excavation works at PC1 are in-progress.

Tseung Kwan O Bus-Bus Interchange New Public Toilet (BBI-Toilet)

• The completed toilet was handed over to Food and Environmental Hygiene Department on 30 September 2020; Additional works under an instruction is in-progress.

Contract 4 (ED/2020/02)

- Excavation work for Drainage Works at Portion 8, 9 & 12
- Excavation work for TDMP at Portion 12.
- GI work at Portion 3 & 6
- Slope works at Portion 10 & 17
- Excavation work and modification to existing retaining wall at 13b

Contract 5 (ED/2019/02)

Portion 1

- Piling Works at E5-PC1 Lower Platform
- Piling Platform Forming at E5-PC3
- Tree Felling of P-T0310 at E5 Slope
- Tree Felling of P-T0311 at E5 Slope

Portion 2

- Welding Test
- Piling Works
- Grouting Works

Portion 3

- 72mpd Piling platform forming at E7
- Hand digging for CLP cable diversion at E7-F2
- Cable diversion work (CLP & Kumshing) at E7-F2.

Portion 4

- Construction at E10-F3
- Preparation for rock protection and drainage diversion at E10-F1.
- 2.3.3 Summary of the relevant permits, licenses, and/or notifications on environmental protection for the Project of contracts 1, 2, 3, 4 and 5 are presented in *Tables 2-1, 2-2, 2-3, 2-4 and 2-5*.

Table 2-1 Status of Environmental Licenses and Permits of the Contract 1

		License/Permit Status					
Item	Description	Permit no./ account	Valid Period		Status		
		no./ Ref. no.	From	То	Status		
1	Form NA – Notification pursuant to Air pollution Control (Construction Dust) Regulation	EPD ref. no. 411762	NA	NA	Valid		
	Form NB – Notification pursuant to Air pollution Control (Construction Dust) Regulation	EPD ref. no. 412730	NA	NA	Valid		

Monthly Environmental Monitoring & Audit Report (July 2022)

		License/Permit Status				
Item	Description	Permit no./ account	Valid Pe	riod	Status	
		no./ Ref. no.	From	То	Status	
2	Chemical Waste Producer Registration	Registration no. WPN 5213-292-C4115-01	15 Feb 17	End of project	Valid	
3	Water Pollution Control Ordinance – Discharge License	Renew of Discharge lie	cense is under	progress.		
4	WasteDisposalRegulation–BillingAccount for Disposal ofConstruction Waste	Account no. 7026925	20 Jan 17	End of project	Valid	
5	Construction Noise Permit	GW-RE0166-22	2 Mar 22	16 Aug 22	Valid	

Table 2-2 Status of Environmental Licenses and Permits of the Con	tract 2
---	---------

		License/Permit Status			
Item	Description	Permit no./ account	Valid Period		Statura
Item		no./ Ref. no.	From	То	Status
1	Notification pursuant to Air pollution Control (Construction Dust) Regulation	EPD ref. no. 312173	NA	NA	Valid
2	Chemical Waste Producer Registration	Registration no. WPN 5213-294-K2890-08	7 Jul 17	End of Project	Valid
3	Water Pollution Control Ordinance – Discharge	WT00028685-2017	02 Aug 17	31 Aug 22	Valid
	License	WT00028686-2017	02 Aug 17	31 Aug 22	Valid
		WT00028687-2017	02 Aug 17	31 Aug 22	Valid
4	WasteDisposalRegulation–BillingAccount for Disposal ofConstruction Waste	Account no.7027548	12 Apr 17	End of project	Valid

		License/Permit Status			
Item	Description	iption Permit no./ account Valid Period		Period	Status
		no./ Ref. no.	From	То	
1	Form NA – Notification pursuant to Air Pollution Control (Construction Dust) Regulation	EPD ref. no. 434186	31-May-18	NA	Valid
2	Chemical Waste Producer Registration	For Area R1W3 (E11) Registration no. WPN : 5213-294-C4239-04 For Area System A	6-Aug-18 6-Aug-18	End of Project End of	Valid Valid
		Registration no. WPN: 5213-293-C4239-05	Ū.	Project	

Status

Valid

Valid

Valid

Valid

Valid

Valid

Valid

		Licer	nse/Permit Sta	tus
Item	Description	Permit no./ account	Valid	Period
		no./ Ref. no.	From	То
		For Area System B	6-Aug-18	End of
		Registration no. WPN	_	Project
		5213-294-C4239-03		
		For Area E8	6-Aug-18	End of
		Registration no. WPN		Project
		5213-292-C4239-06		
3	Water Pollution	For Area R1W3 (E11)	18-Jan-19	31-Jan-24
	Control Ordinance	WT00032742-2018	10-5411-17	51- J all-2 4
	– Discharge	For Area System A	31-Jan-19	31-Jan-24
	License	WT00033223-2019	51-5411-17	51-Jan-24
		For Area System B	24-Jun-19	30-Jun-24
		WT00033229-2019	24-Juli-17	50- J uli-24
		For Area E8	21-Mar-19	31-Mar-24
		WT00033224-2019	21-1v1d1-19	51-ivial-24
4	Waste Disposal	Account no.7031075	20-Jun-18	End of
	Regulation –			project

Table 2-4 Status of Environmental Licenses and Permits of the Contract 4

Billing Account for

Construction Waste

of

Disposal

		License/Permit Status				
Item	Description	Permit no./ account	Valid P	Period	Status	
		no./ Ref. no.	From	То		
1	Form NA – Notification pursuant to Air Pollution Control (Construction Dust) Regulation	EPD ref. no. 470496	19 August 2021	NA	Valid	
2	Waste Disposal Regulation – Billing Account for Disposal of Construction Waste	Account no. 7041336	6 September 2021	NA	Valid	
3	Chemical Waste Producer Registration	Registration no. WPN 5213-296-C1206-12	14 September 21	End of project	Valid	
4	WaterPollutionControlOrdinance-DischargeLicense-	Case no. 477293	In Progress			

Table 2-5Status of Environmental Licenses and Permits of the Contract 5

		License/Permit Status				
Item	Description	Permit no./ account	Valid	Period	Status	
		no./ Ref. no.	From	То		
1	Form NA –	EPD ref. no. 466255	NA	NA	Valid	
	Notification					
	pursuant to Air					
	Pollution Control					

		Licen	se/Permit Sta	itus	
Item	Description	Description Permit no./ account		Valid Period	
		no./ Ref. no.	From	То	
	(Construction Dust) Regulation				
2	Chemical Waste Producer Registration	Registration no. WPN 5298-293-W3611-01	12 May 21	End of project	Valid
3	WaterPollutionControlOrdinance	WT00039694-2021	16 Nov 21	30 Nov 26	Valid
	– Discharge License	WT00040919-2022	5 May 22	31 May 27	Valid
		WT00041457-2022	30 June 22	30 June 27	Valid
		WT00040670-2022	28 Mar 22	31 Mar 27	Valid
4	WasteDisposalRegulation-Billing Account forDisposalofConstruction Waste	Account no. 7040359	3 May 21	NA	Valid

3. SUMMARY OF IMPACT MONITORING REQUIREMENTS

3.1 GENERAL

- 3.1.1 The Environmental Monitoring and Audit requirements are set out in the Approved EM&A manual. Environmental issues such as air quality, construction noise and water quality were identified as the key issues during the construction phase of the Project.
- 3.1.2 A summary of construction phase EM&A requirements are presented in the sub-sections below.

3.2 MONITORING PARAMETERS

THE EM&A PROGRAM OF CONSTRUCTION PHASE MONITORING SHALL COVER THE FOLLOWING ENVIRONMENTAL ISSUES:

- Air quality; and
- Construction noise

3.2.1 A summary of the monitoring parameters is presented in *Table 3-1*.

Table 3-1Summary of EM&A Requirements

Environmental Issue	Parameters
Air Quality	• 1-hour TSP by Real-Time Portable Dust Meter; and
	24-hour TSP by High Volume Air Sampler
Noise	 Leq(30min) in normal working days (Monday to Saturday) 07:00-19:00 except public holiday
INOISE	• Supplementary information for data auditing, statistical results such as L ₁₀ and L ₉₀ shall also be obtained for reference.

3.3 MONITORING LOCATIONS

3.3.1 According to the EM&A Manual Section 4.6, seven (7) most representative and affected air sensitive receivers (ASR) were selected as air monitoring stations (AQM). During site visit at the subject site before the baseline monitoring, it was noted that some planned ASRs identified in the EM&A Manual are still under construction/ has not yet constructed and there were no suitable location to set up the high volume sampler to carry out the baseline 24-hour TSP monitoring. Therefore, a proposed change for the baseline monitoring programme was submitted and agreed by EPD before the baseline monitoring. The impact air quality monitoring locations are listed in *Table 3-2* and illustrated in *Appendix D*.

Table 3-2	Impact Monitoring Stations – Air Quality
-----------	--

ID	ASR ID in EIA	Location in the EM&A Manual	Identified Location during Site Visit	Status
AMS-1	ACYC-01	Chi Yum Ching	Ground of Chi Yum Ching	Replaced by
		She	facing the project site	AMS-1a
AMS-1a (*)	ACYC-01	Tan Shan	Ground of Tan Shan Village	Active
		Village No. 5 - 6	No. 5 - 6 facing the project site	
AMS-2 (#)	DARB-13	Block 8, Site B	Ground of Fung Tai House of	Active
			On Tai Estate	
AMS-3 (:)	DARC-16	Planned Clinic	Ground of Planned Clinic and	Active
		and Community	Community Centre facing	
		Centre, Site C2	Anderson Road (Ancillary	
			Facilities Building)	
AMS-4	DARC-26	Planned School,	Ground of Planned School	Not yet
		Site C2 Note 1	facing Anderson Road	commenced
AMS-5	DARE-06	Block 5, DAR	Main roof of Oi Tat House of	Active

Monthly Environmental Monitoring & Audit Report (July 2022)

ID	ASR ID in EIA	Location in the EM&A Manual	Identified Location during Site Visit	Status
		Site E	On Tat Estate facing the project site	
AMS-6	DARE-17	Block 9, Site E	Main roof of Hau Tat House of On Tat Estate facing the project site	Active
AMS-7	AMYT-04	Ma Yau Tong Village	Balcony at 2 nd floor of Village House Anderson Road No. 1 facing the project site	Active

Note 1: The ASR is under construction.

(#) AMS-2 was activated on 26 November 2018 since Fung Tai House became an air sensitive receiver. 1-hour TSP monitoring was commenced on 26 November 2018 while installation of HVS for 24-hour TSP was pending approval from Housing Authority.

(*) 24-hour TSP monitoring at AMS1 was abandoned since May 2019 due to lack of power supply and the landlord was unreachable. The alternation location of AMS1a was activated on 15 June 2019 for 1-hour and 24-hour TSP monitoring. The proposal was agreed by EPD on 9 Aug 2019. (:) AMS-3 was effective on 3 December 2019.

Construction Noise

3.3.2 According to the EM&A Manual Section 5.5, three (3) most representative and affected noise sensitive receivers (NSR) were selected as monitoring stations. As recommended by the RE and agreed by IEC, one (1) additional noise monitoring location is proposed to add in Oi Tat House of On Tat Estate (hereafter "NMS-4") to oversee the possible noise impact pose to the resident in On Tat Estate, which is an existing NSR close to the major works activities. Moreover, review of impact monitoring location was proposed to IEC in view of the current site condition and it was agreed by all parties. The details of noise monitoring location are listed in Table 3-3 and illustrated in Appendix D.

ID	NSR ID in EIA	Location	Status
NMS-1	Site C2 –	Ground of planned school at DAR facing	Not yet
	School 05 Note 1	the project site	commenced
NMS-2	Site E – School	Rooftop of S.K.H. St. John's Tsang Shiu	Active
(@)		Tim Primary School, where 1m from the	
		exterior of the building facing the project	
		site	
NMS-3(:	Site C2 – R102-	Ground of Ancillary Facilities Building	Active
)		facing the project site	
NMS-4*	Oi Tat House	1m from the exterior of ground floor	Suspended
		façade of Oi Tat House of On Tat Estate	
		facing the project site	
NMS-4a	Oi Tat House	Rooftop of Oi Tat House where 1m from	Active
#		the exterior of Oi Tat House facing the	
		project site	
NMS-5#	Hau Tat House	22/F, refuge floor of Hau Tat House where	Active
		1m from the exterior of Hau Tat House	
		facing the project site.	
NMS-6~	Yung Tai	Rooftop of Yung Tai House where 1m	Active
	House of On	from the exterior of the building facing	
	Tai Estate	the project site)	
NMS-7~	Chi Tai House	Rooftop of Chi Tai House where 1m from	Active
	of On Tai	the exterior of the building facing the	
	Estate	project site	

Table 3-3 **Impact Monitoring Stations – Construction Noise**

Monthly Environmental Monitoring & Audit Report (July 2022)

ID	NSR ID in EIA	Location	Status
NMS-8^		1m from the exterior of the building façade and facing the construction site	Active

Note 1: Construction of the NSR is not yet commenced.

- (*) Additional noise monitoring location was recommended by RE and agreed by IEC. It was temporary suspended and the monitoring location is relocated to NMS4a with effective on 15 Nov 2017.
- (@) NMS-2 was effective on 15 November 2019.
- (:) NMS-3 was effective on 3 December 2019
- (#) Review of noise monitoring locations was proposed by ET and NMS-5 was effective on 15 November 2017.
- (~) Review of noise monitoring locations was proposed by ET and NMS-6 and NMS-7 were effective on 28 Feb 2018.
- () Review of noise monitoring locations was proposed by ET and NMS-8 was effective on 18 April 2018. Noise monitoring at NMS-8 was started on 3 May 2018 upon commencement of construction at relevant section.

Addition Construction Noise Monitoring Location

3.3.3 A Work Instruction was issued from AECOM to AUES in November 2018 for installing three additional noise monitoring stations under Contract 3. According to the Work Instruction, one noise monitoring station was proposed to install at System A Area and two station monitoring points were proposed to install at E8 Area. The noise monitoring locations are shown in *Table* 3-4 below and illustrated in Appendix D.

ID	ID Location Description	
CN1	Holm Glad College	Ground floor of Holm Glad College, where 1m from the exterior of the building facing E8
CN2	Leung Shek CheeGround floor of Leung Shek Chee College, where 1m from the exterior of the building facing E8	
CN3	Oi Tat House of On Tat Estate	Ground floor of Oi Tat House of On Tat Estate, where 1m from the exterior of the building facing System A

Additional Impact Monitoring Stations – Construction Noise Table 3-4

3.4 MONITORING FREQUENCY AND PERIOD

3.4.1 The requirements of impact monitoring in the approved EM&A Manual and presented as follows.

Air Quality Monitoring

- Frequency of impact air quality monitoring is as follows: 3.4.2
 - 1-hour TSP 3 times every six days during course of works throughout the construction ٠ period
 - 24-hour TSP Once every 6 days during course of works throughout the construction period

Noise Monitoring

- 3.4.3 Noise monitoring will be to conduct at the all available designated monitoring stations. The monitoring frequency shall depend on the scale of the construction activities. The following is an initial guide on the regular monitoring frequency for each station on a weekly basis when noise generating activities are underway:
 - one set of Leq_(30min) measurements between 07:00 and 19:00 hours on normal weekdays

3.5 MONITORING EQUIPMENT

Air Quality Monitoring

3.5.1 The 24-hour and 1-hour TSP levels shall be measured by following the standard high volume sampling method as set out in the *Title 40 of the Code of Federal Regulations, Chapter 1 (Part 50)*, Appendix *B*. If the ET proposes to use a direct reading dust meter to measure 1-hour TSP levels, it shall submit sufficient information to the IEC to prove that the instrument is capable of achieving a comparable results to the HVS. The instrument should be calibrated regularly, and the 1-hour sampling shall be determined on yearly basis by the HVS to check the validity and accuracy of the results measured by direct reading method. The filter paper of 24-hour TSP measurement shall be determined by HOKLAS accredited laboratory.

3.5.2 All equipment to be used for air quality monitoring is listed in *Table 3-5*.

Table 3-5Air Quality Monitoring Equipment	
---	--

Equipment		Model
24-hour TSP	High Volume Air Sampler	TISCH High Volume Air Sampler, HVS Model TE-5170
	Calibration Kit	TISCH Model TE-5025A
1- hour TSP Portable Dust Meter		Sibata LD-3B Laser Dust Monitor

Noise Monitoring

- 3.5.3 Sound level meter in compliance with the International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications shall be used for carrying out the noise monitoring. The sound level meter shall be checked using an acoustic calibrator. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in ms-1.
- 3.5.4 Noise equipment as perform for construction phase monitoring is listed in *Table 3-6*.

Table 3-6Construction Noise Monitoring Equipment

Equipment	Model
Integrating Sound Level Meter	NL-31, NL-52
Calibrator	NC-75
Portable Wind Speed Indicator	Anemometer AZ Instrument 8908

3.6 MONITORING METHODOLOGY

1-hour TSP

- 3.6.1 The 1-hour TSP monitor was a brand named "Sibata LD-3 Laser Dust monitor Particle Mass Profiler & Counter" which is a portable, battery-operated laser photometer. The 1-hour TSP meter provides a real time 1-hour TSP measurement based on 90° light scattering. The 1-hour TSP monitor consists of the following:
 - (a.) A pump to draw sample aerosol through the optic chamber where TSP is measured;
 - (b.) A sheath air system to isolate the aerosol in the chamber to keep the optics clean for maximum reliability; and
 - (c.) A built-in data logger compatible with Windows based program to facilitate data collection, analysis and reporting.
- 3.6.2 The 1-hour TSP meter to be used will be within the valid period, calibrated by the manufacturer prior to purchasing. Zero response of the instrument will be checked before and after each monitoring event.

24-hour TSP

3.6.3 The equipment used for 24-hour TSP measurement is Thermo Andersen Model GS2310 TSP

high volume air sampling system, which complied with *EPA Code of Federal Regulation*, *Appendix B to Part 50*. The High Volume Air Sampler (HVS) consists of the following:

- (a.) An anodized aluminum shelter;
- (b.) A 8"x10" stainless steel filter holder;
- (c.) A blower motor assembly;
- (d.) A continuous flow/pressure recorder;
- (e.) A motor speed-voltage control/elapsed time indicator;
- (f.) A 7-day mechanical timer, and
- (g.) A power supply of 220v/50 Hz
- 3.6.4 For HVS for 24-hour TSP monitoring, the HVS is mounted in a metallic cage with a top for protection and also it is sat on the existing ground or the roof of building. The flow rate of the HVS between 0.6m³/min and 1.7m³/min will be properly set in accordance with the manufacturer's instruction to within the range recommended in *EPA Code of Federal Regulation, Appendix B to Part 50*. Glass Fiber Filter 8" x 10" of TE-653 will be used for 24-Hour TSP monitoring and would be supplied by laboratory. The general procedures of sampling are described as below:-
 - A horizontal platform with appropriate support to secure the samples against gusty wind should be provided;
 - No two samplers should be placed less than 2 meters apart;
 - The distance between the sampler and an obstacle, such as building, must be at least twice the height that the obstacle protrudes above the sample;
 - A minimum of 2 meters of separation from any supporting structure, measured horizontally is required;
 - Before placing any filter media at the HVS, the power supply will be checked to ensure the sampler work properly;
 - The filter paper will be set to align on the screen of HVS to ensure that the gasket formed an air tight seal on the outer edges of the filter. Then filter holder frame will be tightened to the filter hold with swing bolts. The holding pressure should be sufficient to avoid air leakage at the edge;
 - The mechanical timer will be set for a sampling period of 24 hours (00:00 mid-night to 00:00 mid-night next day). Information will be recorded on the field data sheet, which would be included the sampling data, starting time, the weather condition at current and the filter paper ID with the initial weight;
 - After sampling, the filter paper will be collected and transfer from the filter holder of the HVS to a sealed envelope and sent to a local HOKLAS accredited laboratory for quantifying.
- 3.6.5 All the sampled 24-hour TSP filters will be kept in normal air conditioned room conditions, i.e. 70% HR (Relative Humidity) and 25°C, for six months prior to disposal.
- 3.6.6 The HVS used for 24-hour TSP monitoring will be calibrated before the commencement for sampling, and after in two months interval for 1 point checking of maintenance and six months interval for five points calibrate in accordance with the manufacturer's instruction using the NIST-certified standard calibrator (Tisch Calibration Kit Model TE-5025A) to establish a relationship between the follow recorder meter reading in cfm (cubic feet per minute) and the standard flow rate, Qstd, in m³/min. Motor brushes of HVS will be regularly replaced of about five hundred hours per time. The calibration certificates of all monitoring equipment used for the impact monitoring program in the Reporting Period and the HOKLAS accredited certificate of laboratory are attached in *Appendix E*.

Noise Monitoring

3.6.7 As referred to in the Technical Memorandum (TM) issued under the NCO, sound level meters in compliance with the International Electrotechnical Commission Publications 651: 1979

(Type 1) and 804:1985 (Type 1) specifications shall be used for carrying out the noise monitoring. Immediately prior to and following each noise measurement the accuracy of the sound level meter shall be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0 dB.

- 3.6.8 All noise measurements will be performed with the meter set to FAST response and on the A-weighted equivalent continuous sound pressure level (Leq). Leq_(30 min) in six consecutive Leq_(5 min) measurements will be used as the monitoring parameter for the time period between 07:00-19:00 hours on weekdays throughout the construction period.
- 3.6.9 The sound level meter will be mounted d on a tripod at a height of 1.2 m and placed at the assessment point and oriented such that the microphone is pointed to the site with the microphone facing perpendicular to the line of sight. The windshield will be fitted for all measurements. Where a measurement is to be carried out at a building, the assessment point would normally be at a position 1 m from the exterior of the building façade. Where a measurement is to be made for noise being received at a place other than a building, the assessment point would be at a position 1.2 m above the ground in a free-field situation, i.e. at least 3.5 m away from reflective surfaces such as adjacent buildings or walls.
- 3.6.10 Immediately prior to and following each noise measurement the accuracy of the sound level meter will be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements will be accepted as valid only if the calibration level from before and after the noise measurement agrees to within 1.0 dB.
- 3.6.11 Noise measurements will not be made in fog, rain, wind with a steady speed exceeding 5m/s or wind with gusts exceeding 10m/s. The wind speed will be checked with a portable wind speed meter capable of measuring the wind speed in m/s.
- 3.6.12 The sound level meter and calibrator are calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme at yearly basis. The calibration certificates of all monitoring equipment used for the impact monitoring program in the Reporting Period is attached in *Appendix E*.

Meteorological Information

3.6.13 The meteorological information including wind direction, wind speed, humidity, rainfall, air pressure and temperature etc. during baseline monitoring is extracted from the closest Hong Kong Observatory Station. To obtain the most appropriate meteorological information where available, the data of temperature is extracted from the Kwun Tong Observatory Station; the data of wind speed and wind direction are extracted from Kai Tak Observatory Station and the data of humidity is extracted from King's Park Station.

3.7 DERIVATION OF ACTION/LIMIT (A/L) LEVELS

3.7.1 The baseline results form the basis for determining the environmental acceptance criteria for the impact monitoring. According to the approved Environmental Monitoring and Audit Manual, the air quality, construction noise were set up, namely Action and Limit levels are listed in *Tables 3-7 and 3-8*.

Action Level (µg /m³) Limit Level (µg/m³) **Monitoring Station** 1-hour TSP 24-hour TSP 1-hour TSP 24-hour TSP AMS-1 313 154 500 260 AMS-1a(*) 313 154 500 260 AMS-2 319 500 260 165 AMS-3 319 165 500 260

 Table 3-7
 Action and Limit Levels for Air Quality Monitoring

Monthly	Environmental	Monitoring	& Audit Rep	ort (July	2022)	
						_

Monitoring Station	Action Lev	vel ($\mu g / m^3$)	Limit Level (µg/m ³)		
Monitoring Station	1-hour TSP	24-hour TSP	1-hour TSP	24-hour TSP	
AMS-4	315	165	500	260	
AMS-5	299	166	500	260	
AMS-6	303	168	500	260	
AMS-7	307	156	500	260	

(*) 24-hour TSP monitoring at AMS1 was abandoned since May 2019 due to lack of power supply and the landlord was unreachable. The alternation location of AMS1a was activated on 15 June 2019 for 1-hour and 24-hour TSP monitoring. The proposal was agreed by EPD on 9 Aug 2019.

Table 3-8Action and Limit Levels for Construction	Noise
---	-------

Monitoring Logotion	Action Level	Limit Level in dB(A)		
Monitoring Location	Time Period: 0700-1900 hours on normal weekdays			
NMS-1		70 dB(A) ^{Note 1} / 65 dB(A) ^{Note 1}		
NMS-2(@)		70 dB(A) = 703 dB(A)		
NMS-3(:)		75 dB(A)		
NMS-4*		75 dB(A)		
NMS-4a#		75 dB(A)		
NMS-5#	When one or more documented	75 dB(A)		
NMS-6~	complaints are received	75 dB(A)		
NMS-7~		75 dB(A)		
NMS-8^		75 dB(A)		
CN1+		70 dB(A) ^{Note 1} / 65 dB(A) ^{Note 1}		
CN2+		70 dB(A) ^{Note 1} / 65 dB(A) ^{Note 1}		
CN3+		75 dB(A)		

Noise Limit Levels for school is 70dB(A) and should be reduced to 65dB(A) during Note 1: examination period.

Note: If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the Noise Control Authority have to be followed.

Remark: (*) Additional noise monitoring location was recommended by RE and agreed by IEC. It was temporary suspended and the monitoring location is relocated to NMS4a with effective on 15 Nov 2017.

(@) NMS-2 was effective on 15 November 2019.

(:) NMS-3 was effective on 3 December 2019

(#) Review of noise monitoring locations was proposed by ET and NMS-5 was effective on 15 Nov 2017.

(~) Review of noise monitoring locations was proposed by ET and NMS-6 and NMS-7 were effective on 28 Feb 2018.

(^) Review of noise monitoring locations was proposed by ET and NMS-8 was effective on 18 April 2018. Noise monitoring at NMS-8 was started on 3 May 2018 upon commencement of construction at relevant section.

(+) Additional noise monitoring locations as instructed by AECOM which effective in Dec 18.

3.7.2 Should non-compliance of the environmental quality criteria occurs, remedial actions will be triggered according to the Event and Action Plan which presented in Appendix F.

3.8 DATA MANAGEMENT AND DATA QA/QC CONTROL

- 3.8.1 All monitoring data will be handled by the ET's in-house data recording and management system. The monitoring data recorded in the equipment will be downloaded directly from the equipment at the end of each monitoring day. The downloaded monitoring data will input into a computerized database properly maintained by the ET. The laboratory results will be input directly into the computerized database and checked by personnel other than those who input the data.
- 3.8.2 For monitoring parameters that require laboratory analysis, the local laboratory shall follow the

QA/QC requirements as set out under the HOKLAS scheme for the relevant laboratory tests.

4. AIR QUALITY MONITORING

4.1 GENERAL

- 4.2.1 In the Reporting Period, air quality monitoring was performed at the active designated monitoring locations AMS-1a, AMS-2, AMS-3, AMS-5, AMS-6 and AMS-7. Since installation of HVS for 24-hour TSP at AMS-2 and AMS-3 were pending approval from relevant departments, only 1-hour TSP monitoring was conducted at AMS-2 and AMS-3. No monitoring was conducted at AMS-4 since they are planned ASR which are still under construction/ not yet constructed.
- 4.2.2 The air quality monitoring schedule is presented in *Appendix G* and the monitoring results are summarized in the following sub-sections.

4.3 RESULTS OF AIR QUALITY MONITORING

4.3.1 In the Reporting Period, a total of *90* events of 1-hour TSP monitoring and *20* events of 24-hours TSP were carried out and the monitoring results are summarized in *Tables 4-1 to 4-5*. The detailed 24-hour TSP monitoring data are presented in *Appendix H* and the relevant graphical plots are shown in *Appendix I*.

Table 4-1Summary of 24-hour and 1-hour TSP Monitoring Results (AMS-1a)

	24-hour	1-hour TSP (µg/m ³)				
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading
4-Jul-22	26	7-Jul-22	13:13	65	62	60
9-Jul-22	11	11-Jul-22	13:00	64	66	65
15-Jul-22	22	16-Jul-22	10:37	65	63	64
21-Jul-22	13	22-Jul-22	10:46	62	58	61
27-Jul-22	30	28-Jul-22	13:00	57	64	62
Average	20	Average 63				
(Range)	(11 – 30)	(Range	e)		(57 - 66)	

Table 4-2Summary of 1-hour TSP Monitoring Results (AMS-2)

1-hour TSP (µg/m ³)				
Date	Start Time	1 st reading	2 nd reading	3 rd reading
7-Jul-22	13:34	65	67	64
11-Jul-22	15:08	67	66	68
16-Jul-22	9:35	65	64	68
22-Jul-22	9:57	65	63	64
28-Jul-22	15:15	62	67	66
Ave	erage	65		
(Range)			(62 - 68)	

Table 4-3Summary of 1-hour TSP Monitoring Results (AMS-3)

1-hour TSP (µg/m³)				
Date	Start Time	1 st reading	2 nd reading	3 rd reading
7-Jul-22	13:17	67	69	66
11-Jul-22	14:16	65	63	66
16-Jul-22	13:28	63	67	66
22-Jul-22	9:51	66	70	68
28-Jul-22	9:46	63	66	64
Average (Range)			66 (63 - 70)	
(Ra	inge)		(03 - 70)	

Table 4-4Summary of 24-hour and 1-hour TSP Monitoring Results (AMS-5)

Monthly Environmental Monitoring & Audit Report (July 2022)

	24-hour	1-hour TSP (µg/m³)						
Date	TSP (µg/m ³)	Date	Date Start Time		2 nd reading	3 rd reading		
4-Jul-22	15	7-Jul-22	9:53	68	63	64		
9-Jul-22	16	11-Jul-22	9:25	68	66	67		
15-Jul-22	21	16-Jul-22	9:51	65	68	66		
21-Jul-22	42	22-Jul-22	10:08	72	67	68		
27-Jul-22	23	28-Jul-22	10:03	71	73	74		
Average	24	Average		68				
(Range)	(15 - 42)	(Rang	(Range)		(63 – 74)			

Table 4-5	Summary of 24-hour and 1-hour TSP Monitoring Results (AMS-6)
	Summary of 24-nour and 1-nour 151 Monitoring Results (AM5-0)

	24-hour	1-hour TSP (µg/m ³)						
Date	TSP (µg/m³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading		
4-Jul-22	9	7-Jul-22	9:38	71	64	65		
9-Jul-22	9	11-Jul-22	10:10	78	81	80		
15-Jul-22	3	16-Jul-22	9:13	71	73	74		
21-Jul-22	6	22-Jul-22	10:55	85	78	76		
27-Jul-22	34	28-Jul-22	13:42	72	75	76		
Average (Range)	12 (3 - 34)	Average (Range)		75 (64 - 85)				

	24-hour	1-hour TSP (µg/m ³)						
Date	TSP (μg/m ³)	Date	Date Start Time		2 nd reading	3 rd reading		
4-Jul-22	27	7-Jul-22	9:06	69	71	70		
9-Jul-22	12	11-Jul-22	9:00	70	71	68		
15-Jul-22	21	16-Jul-22	9:58	67	69	64		
21-Jul-22	21	22-Jul-22	9:13	66	67	69		
27-Jul-22	18	28-Jul-22	9:24	62	66	65		
Average (Range)	20 (12 - 27)	Average (Range)			68 (62 - 71)			

4.3.2 As shown in *Tables 4-1 to 4-6*, all the 1-hour TSP and 24-hour TSP monitoring results in the Reporting Period were below the Action and Limit Levels. No Notification of Exceedance (NOE) was issued in this Reporting Period.

4.3.3 The meteorological data during the impact monitoring days are summarized in Appendix J.

5. CONSTRUCTION NOISE MONITORING

5.1 GENERAL

- 5.2.1 In the Reporting Period, noise monitoring was performed at designated monitoring locations NMS2 and NMS3 and the additional monitoring locations NMS4a, NMS5, NMS6, NMS7 and NMS8. No monitoring was conducted at the designated monitoring locations NMS1 since they are the planned NSR and still under the construction.
- 5.2.2 In addition, a Work Instruction was issued from AECOM to AUES in November 2018 for installing three additional noise monitoring stations, i.e., CN1, CN2 and CN3 for Contract 3. Impact noise monitoring was performed at the three additional noise monitoring locations since December 2018.
- 5.2.3 The noise monitoring schedule is presented in *Appendix G* and the monitoring results are summarized in the following sub-sections.

5.3 NOISE MONITORING RESULTS IN REPORTING MONTH

5.3.1 In the Reporting Period, a total of **28** events noise measurements were carried out at the designated locations under Contract 1. The noise monitoring results at the designated locations are summarized in *Tables 5-1*. The detailed noise monitoring data are presented in *Appendix H* and the relevant graphical plots are shown in *Appendix I*.

 Table 5-1
 Summary of Construction Noise Monitoring Results for Contract 1

Construction Noise Level (L _{eq30min}), dB(A)									
Date	NMS2	NMS3	NMS4a	NMS5	NMS6	NMS7			
7-Jul-22	62	64	67	62	66	66			
11-Jul-22	63	63	70	70	67	67			
22-Jul-22	63	63	66	69	63	66			
28-Jul-22	62	61	67	68	64	67			
Limit Level	70 dB(A) / 65 dB(A) ^{Note 1}			75 dB(A)					

Note 1: Noise Limit Levels for school is 70dB(A) and should be reduced to 65dB(A) during examination period;

 Table 5-1a
 Summary of Construction Noise Monitoring Results for Contract 1

Construction Noise Level (Leq30min), dB(A)						
Date	NMS8					
7-Jul-22	61					
14-Jul-22	60					
20-Jul-22	60					
30-Jul-22	62					
Limit Level	75 dB(A)					

5.3.2 For the additional noise monitoring under Contract 3, a total of **12** events noise measurements were performed for the Contract. The noise monitoring results are summarized in *Tables 5-2*. The detailed noise monitoring data are presented in *Appendix H* and the relevant graphical plots are shown in *Appendix I*.

 Table 5-2
 Summary of Construction Noise Monitoring Results for Contract 3

Construction Noise Level (L _{eq30min}), dB(A)							
Date	CN1	CN2	CN3				
7-Jul-22	62	62	63				
14-Jul-22	61	60	60				
20-Jul-22	63	60	63				
30-Jul-22	62	61	61				

Construction Noise Level (Leq30min), dB(A)							
Date	CN1	CN2	CN3				
Limit Level	70 dB(A) / 65 dB(A) ^{Note 1}	70 dB(A) ^{Note 1} / 65 dB(A) ^{Note 1}	75 dB(A)				

Note 1: Noise Limit Levels for school is 70dB(A) and should be reduced to 65dB(A) during examination period.

5.3.3 As shown in *Tables 5-1 and 5-2*, no Limit Level exceedance was recorded in this Reporting Period. No noise complaint (which triggered Action level exceedance) was received under the Project.

6. WASTE MANAGEMENT

6.1 GENERAL WASTE MANAGEMENT

6.2.1 Waste management was carried out by an on-site Environmental Officer or an Environmental Supervisor from time to time.

6.3 RECORDS OF WASTE QUANTITIES

- 6.3.1 All types of waste arising from the construction work are classified into the following:
 - Construction & Demolition (C&D) Material;
 - Chemical Waste;
 - General Refuse; and
 - Excavated Soil.
- 6.3.2 The quantities of waste for disposal in this Reporting Period are summarized in *Tables 6-1* and *6-2* and the Monthly Summary Waste Flow Table is shown in *Appendix K*. Whenever possible, materials were reused on-site as far as practicable.

Type of	Cont	ract 1	Cont	tract 2	Cont	ract 3	Cont	ract 4	Cont	ract 5
Waste	Quantity	Disposal Location								
Total generated Inert C&D Materials ('000m ³) (#)	9.504	-	0.15	-	1.579	-	0	-	0.028	-
Hard Rock and Large Broken Concrete ('000m ³)	13.582	-	0	-	0	-	0	-	0.028	-
Reused in this Contract (Inert) ('000m ³)	0	-	0	-	0.053	-	0	-	0	-
Reused in other Projects (Inert) (`000m ³)	9.473	*	0	-	0.495	-	0	*	0	-
Disposal as Public Fill (Inert) ('000m ³)	0.031	TKO 137	0.15	TKO 137	1.032	TKO 137	176.54	-	0.028	-

Table 6-1Summary of Quantities of Inert C&D Materials

Remark (#): *The total generated inert C&D materials will not take account for the hard rock and large broken concrete.*

(*) Approved alternative disposal ground.

Type of	Cont	ract 1	Cont	ract 2	Cont	ract 3	Conti	ract 4	Cont	ract 5
Type of Waste	Quantity	Disposal Location								
Recycled Metal ('000kg)	0.004	Licensed collector	0	-	0	-	0	-	0	-
Recycled Paper / Cardboard Packing ('000kg)	0	-	0	-	0	-	0	-	0	-
Recycled Plastic ('000kg)	0.007	Licensed collector	0	-	1.778	Licensed collector	0	-	0	-
Chemical Wastes ('000kg)	0	-	0	-	0	-	0	-	0	-
General Refuses ('000m ³)	0.107	SENT	0.02	SENT	0.013	SENT	0	-	0.003	SENT

Table 6-2Summary of Quantities of C&D Wastes

7. SITE INSPECTION

7.1 REQUIREMENTS

7.1.1 According to the approved EM&A Manual, the environmental site inspection shall be formulation by ET Leader. Weekly environmental site inspections should be carried out to confirm the environmental performance.

7.2 FINDINGS / DEFICIENCIES DURING THE REPORTING MONTH

Contract 1

7.2.1 In the Reporting Period, joint site inspections for Contract 1 to evaluate site environmental performance were carried out by the RE, ET and the Contractor on 7, 12, 19 and 26 July 2022 in which IEC joined the site inspection with SSEMC on 7 July 2022. No non-compliance was noted. The findings / deficiencies of *Contract 1* that observed during the weekly site inspection are listed in *Table 7-1*.

Date	Findings / Deficiencies	Follow-Up Status
7 July 2022	• No adverse environmental issue was observed during site inspection	• NA
12 July 2022	• No adverse environmental issue was observed during site inspection.	• NA
19 July 2022	The Contractor was reminded to dispose of accumulated general waste at System A	Reminder only
26 July 2022	• No adverse environmental issue was observed during site inspection.	• NA

Table 7-1Site Observations of Contract 1

Contract 2

7.2.2 In the Reporting Period, joint site inspections for Contract 2 to evaluate site environmental performance were carried out by the RE, ET and the Contractor on 6, 13, 20 and 27 July 2022 in which IEC joined the site inspection with SSEMC on 27 July 2022. No non-compliance was noted. The findings / deficiencies of *Contract 2* that observed during the weekly site inspection are listed in *Table 7-2*.

Table 7-2Site Observations of Contract 2

Date	Findings / Deficiencies	Follow-Up Status
6 July 2022	 Stagnant water should be removed after rainy days to avoid mosquito breeding. (Portion 2). Tree protection zone should be properly maintained (Portion 2). 	 Stagnant water was removed in chemical container and u-channel Tree protection zone was properly maintained to protect retained trees
13 July 2022	• The Contractor was reminded to clean stagnant water on site and within the u-channel regularly at Portion 2.	Reminder only
20 July 2022	 The Contractor was advised to remove accumulated water at Portion 3 and Portion 2. The Contractor was advised to dispose construction waste and maintain good 	 Accumulated water was removed on site. Waste storage area was set up on site.
	housekeeping at Portion 3.	
27 July 2022	No adverse environmental issue was observed during site inspection.	• NA

Contract 3

7.2.3 In the Reporting Period, joint site inspections for Contract 3 to evaluate site environmental performance were carried out by the RE, ET and the Contractor on 8, 15, 22 and 29 July 2022 in which IEC joined the site inspection with SSEMC on 15 July 2022. No non-compliance was noted. The findings / deficiencies of *Contract 3* that observed during the weekly site inspection are listed in *Table 7-3*

Date	Findings / Deficiencies	Follow-Up Status		
8 July 2022	• The Contractor was reminded to clean stagnant water on site regularly at System A.	• Reminder only.		
15 July 2022	No adverse environmental issue was observed during site inspection.	• NA		
22 July 2022	• No adverse environmental issue was observed during site inspection.	• NA		
29 July 2022	No adverse environmental issue was observed during site inspection.	• NA		

Contract 4

7.2.4 In the Reporting Period, joint site inspections for Contract 4 to evaluate site environmental performance were carried out by the RE, ET and the Contractor on 6, 13, 19 and 27 July 2022 in which IEC joined the site inspection with SSEMC on 19 July 2022. No non-compliance was noted. The findings / deficiencies of *Contract 4* that observed during the weekly site inspection are listed in *Table 7-4*

Table 7-4Site Observations of Contract 4

Date	Findings / Deficiencies	Follow-Up Status	
6 July 2022	No adverse environmental issue was observed.	• NA	
13 July 2022	• The Contractor was reminded to spray water on site regularly.	Reminder only	
19 July 2022	No adverse environmental issue was observed.	• NA	
27 July 2022	• The Contractor was reminded to clean u-channel regularly at 185mPD	• Reminder only	
	• The Contractor was reminded to spray on site regularly.	• Reminder only	

Contract 5

7.2.5 In the Reporting Period, joint site inspections for Contract 5 to evaluate site environmental performance were carried out by the RE, ET and the Contractor on 7, 14, 21 and 28 July 2022 in which IEC joined the site inspection with SSEMC on 21 July 2022. No non-compliance was noted. The findings / deficiencies of *Contract 5* that observed during the weekly site inspection are listed in *Table 7-5*

Date	Findings / Deficiencies	Follow-Up Status		
7 July 2022	• The Contractor was advised to provide NRMM label for Drilling Machine at E6.	NRMM label was provided for the Drilling Machine		
	• The Contractor was reminded to clean stagnant water within site area after raining.	Reminder only		
14 July 2022	The Contractor was advised to place	Chemical containers		

Monthly Environmental Monitoring & Audit Report (July 2022)

Date	Findings / Deficiencies	Follow-Up Status		
	chemical containers inside drip tray at	were removed.		
	E6.The Contractor was reminded to enhance house-keeping within site area.	Reminder only		
21 July 2022	The Contractor was advised to place	Chemical containers		
	chemical containers inside drip tray at	were removed.		
	E6.			
	The Contractor was reminded to clean	Reminder only		
	stagnant regularly within site area for			
	mosquito mitigation.			
28 July 2022	No adverse environmental issue was	• NA		
	observed.			

8. ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE

8.1 Environmental Complaint, Summons and Prosecution

- 8.1.1 In the Reporting Period, no environmental complaint was received. Besides, no summons and prosecution under the EM&A Programme was lodged for the project. Investigation for the complaint was undertaken and presented in following sections.
- 8.1.2 The complaint log and Investigation Reports issued in the Reporting Period are shown in *Appendix M*.
- 8.1.3 The statistical summary table of environmental complaint, summons and prosecution is presented in *Tables 8-1, 8-2* and *8-3*.

Depending Devied	Contract	Environmental Complaint Statistics		
Reporting Period	no.	Frequency	Cumulative	Complaint Nature
1 Apr 2017 – 30 June 2022	1	0	59	Dust, Noise, Water and light nuisance
21 Mar 2017 – 30 June 2022	2	0	10	Noise
31 May 2018 – 30 June 2022	3	0	8	Waste Management, Noise, Water Quality
27 Sep 2021 – 30 June 2022	4	0	0	NA
30 Mar 2021 – 30 June 2022	5	0	0	NA
	1	0	59	NA
	2	0	10	NA
1 – 31 July 2022	3	0	8	NA
	4	0	0	NA
	5	0	0	NA

Table 8-1Statistical Summary of Environmental Complaints

Table 8-2	Statistical Summary of Environmental Summons
-----------	--

Depenting Devied	Contract	Environmental Summons Statistics		
Reporting Period	no.	Frequency	Cumulative	Summons Nature
1 Apr 2017 – 30 June 2022	1	0	0	NA
21 Mar 2017 – 30 June 2022	2	0	0	NA
31 May 2018 – 30 June 2022	3	0	0	NA
27 Sep 2021 – 30 June 2022	4	0	0	NA
30 Mar 2021 – 30 June 2022	5	0	0	NA
	1	0	0	NA
	2	0	0	NA
1 – 31 July 2022	3	0	0	NA
	4	0	0	NA
	5	0	0	NA

Statistical Summary of Environmental Prosecution

Departing Devied	Contract	Environmental Prosecution Statistics		
Reporting Period	no.	Frequency	Cumulative	Prosecution Nature
1 Apr 2017 – 30 June 2022	1	0	0	NA
21 Mar 2017 – 30 June 2022	2	0	0	NA
31 May 2018 – 30 June 2022	3	0	0	NA
27 Sep 2021 – 30 June 2022	4	0	0	NA
30 Mar 2021 – 30 June 2022	5	0	0	NA

Reporting Period	Contract	Environmental Prosecution Statistics		
	no.	Frequency	Cumulative	Prosecution Nature
1 – 31 July 2022	1	0	0	NA
	2	0	0	NA
	3	0	0	NA
	4	0	0	NA
	5	0	0	NA

9. IMPLEMENTATION STATUS OF MITIGATION MEASURES

9.1 GENERAL REQUIREMENTS

- 9.1.1 The environmental mitigation measures that recommended in the Implementation Schedule for Environmental Mitigation Measures (ISEMM) in the approved EM&A Manual covered the issues of dust, noise, water and waste and they are summarized presented in *Appendix L*.
- 9.1.2 All contracts under the Project shall be implementing the required environmental mitigation measures according to the approved EM&A Manual as subject to the site condition. Environmental mitigation measures generally implemented in this Reporting Period are summarized in *Table 9-1*.

Issues	Environmental Mitigation Measures
Water Quality	Wastewater to be treated by filtration system; such as, silt curtain or sedimentation tank before discharge.Replace silt curtain materials if necessary
Air Quality	 Maintain damp / wet surface on access road Keep slow speed in the sites All vehicles must use wheel washing facility before off site All vehicles must use wheel washing facility before off site Sprayed water during breaking works
Noise	 Restrain operation time of plants from 07:00 to 19:00 on any working day except for Public Holiday and Sunday. Keep good maintenance of plants Place noisy plants away from residence or school Provide noise barriers or hoarding to enclose the noisy plants or works Shut down the plants when not in used.
Waste and Chemical Management	 On-site sorting prior to disposal Follow requirements and procedures of the "Trip-ticket System" Predict required quantity of concrete accurately Collect the unused fresh concrete at designated locations in the sites for subsequent disposal
General	The site was generally kept tidy and clean.

 Table 9-1
 Environmental Mitigation Measures

9.2 TENTATIVE CONSTRUCTION ACTIVITIES IN THE COMING MONTH

9.2.1 Construction activities for Contract 1 in the coming month are listed below:

Fresh Water Pumping Station:

- Pumping Station E&M Works.
- Draw pits and cabling works

Salt Water Reservoir:

- Salt water Reservoir E&M works
- Draw pits and cabling works

Fresh Water Reservoir:

- To continue the construction works of WSD Access.
- To continue the road works.
- To commence the green roof (Landscape) works.

To commence the excavation works for retaining wall of Hiking Trail. <u>RWS Access Road & External Works:</u>

- CLP Power supply duct
- Road Works& Fencing

PTT:

• Lighting system and PMMA panel installation to continue, concrete pavement construction, kerb laying and noise barrier works would continue.

Underpass Tunnel:

• Tunnel backfill to east portal, VE Panels, Road Works and E&M

Road L4 (RWA18, Noise Barrier, RWA12, utilities & Road Works):

- Demolish existing retaining wall R10,
- Road Works Drainage
- Watermain & Utilities
- Road Formation

Road Improvement Works at Po Lam Road

- Construction of permanent footpath and surface drainage system complete
- Excavation works to facilitate installation of the E&M/ACT/Earth pit and construction of permanent footpath and surface drainage system complete
- Construct concrete carriageway and footpath complete
- Install beam barrier complete
- Construct Island complete
- Implementation of stage 4 TTA

Hiking Trail connecting to Wison Trail(Portion B5):

- Construction works at Hiking Trail
- 9.2.2 Construction activities for Contract 2 in the coming month are listed below:
 - Temporary Traffic Arrangement (TTA)
 - Mass Concrete construction
 - Formwork and Falsework installation and dismantling
 - Lifting Tower Construction and lift installation
 - Rebar fixing
- 9.2.3 Construction activities for Contract 3 in the coming month are listed below:

Pedestrian Connectivity Facility E8 (PC-E8)

• Touch-up outstanding works are in progress.

Pedestrian Connectivity Facility E11 (PC-E11)

- ABWF works and E&M works at LT2 & ST2 are in-progress.
- Backfilling works at PC6 area is in-progress.
- ABWF works and E&M works at LT1 & ST1 are in-progress.
- ABWF work and E&M works inside the footbridge steel frame are in-progress.

Pedestrian Connectivity Facilities Systems A (PC-SYA)

- ABWF works and E&M works at LT1, LT2 & ST1 are in-progress.
- Erect steel works inside RC structure is in-progress.
- Erect footbridge steel frame is in-progress.

Pedestrian Connectivity Facilities Systems B (PC-SYB)

- RC works at SyB-LT1 & ST1 is in-progress.
- Erect footbridge steel frame is in-progress.
- Install sheet-pile and excavation works at PC1 are in-progress.

Tseung Kwan O Bus-Bus Interchange New Public Toilet (BBI-Toilet)

- The completed toilet was handed over to Food and Environmental Hygiene Department on 30 September 2020; Additional works under an instruction is in-progress.
- 9.2.4 Construction activities for Contract 4 in the coming month are listed below:
 - Excavation work for Drainage Works at Portion 8, 9 & 12
 - Excavation work for TDMP at Portion 12.
 - GI work at Portion 3 & 6
 - Slope works at Portion 10 & 17
 - Excavation work and modification to existing retaining wall at 13b
- 9.2.5 Construction activities for Contract 5 in the coming month are listed below:

Portion 1

- Piling Works at E5-PC1 lower Platform
- Form Piling Platform at E5-PC3
- · Implement TTA at EVA and mobilization of crawler crane
- Piling Works at E5-PC2 upper platform
- Remove existing soil nail at E5-PC3

Portion 2

- Piling Works
- Loading test for compression & tension piles
- Install sheet pile and excavation at E6-PC1&PC2

Portion 3

- Lower down slope to form piling platform
- Install mini-piles

Portion 4

- Construction of E10-F3 abutment
- Excavation of lift tower footing E10-FT1

9.3 Key Issues for the Coming Month

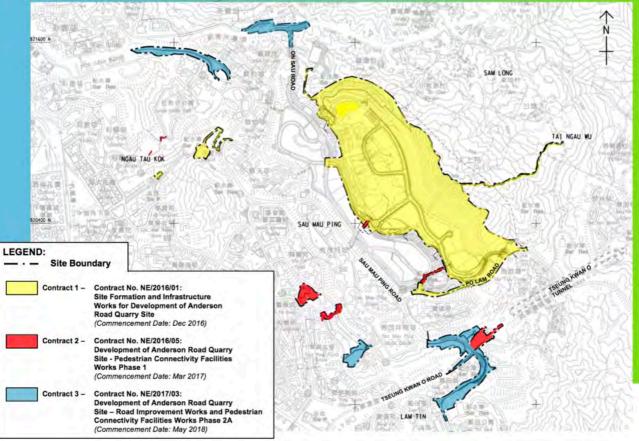
- 9.3.1 Key issues to be considered in the coming month include:
 - Implementation of dust suppression measures at all times;
 - Potential wastewater quality impact due to surface runoff;
 - Potential fugitive dust quality impact due from the dry/loose/exposure soil surface/dusty material;
 - Disposal of empty engine oil containers within site area;
 - Ensure dust suppression measures are implemented properly;
 - Sediment catch-pits and silt removal facilities should be regularly maintained;
 - Management of chemical wastes;
 - Discharge of site effluent to the nearby wetland, stockpiling or disposal of materials, and any dredging or construction area at this area are prohibited;
 - Follow-up of improvement on general waste management issues; and
 - Implementation of construction noise preventative control measures
- 9.3.2 During wet season, the Contractors should pay special attention on water quality mitigation measures and fully implement according to the ISEMM of the EM&A Manual, in particular to prevent muddy water or other water pollutants from site surface overflow to public area should be properly maintained. The implementation of water quality mitigation measures conducted by the Contractor is shown in *Appendix N*.

10. CONCLUSIONS AND RECOMMENDATIONS

10.1 CONCLUSIONS

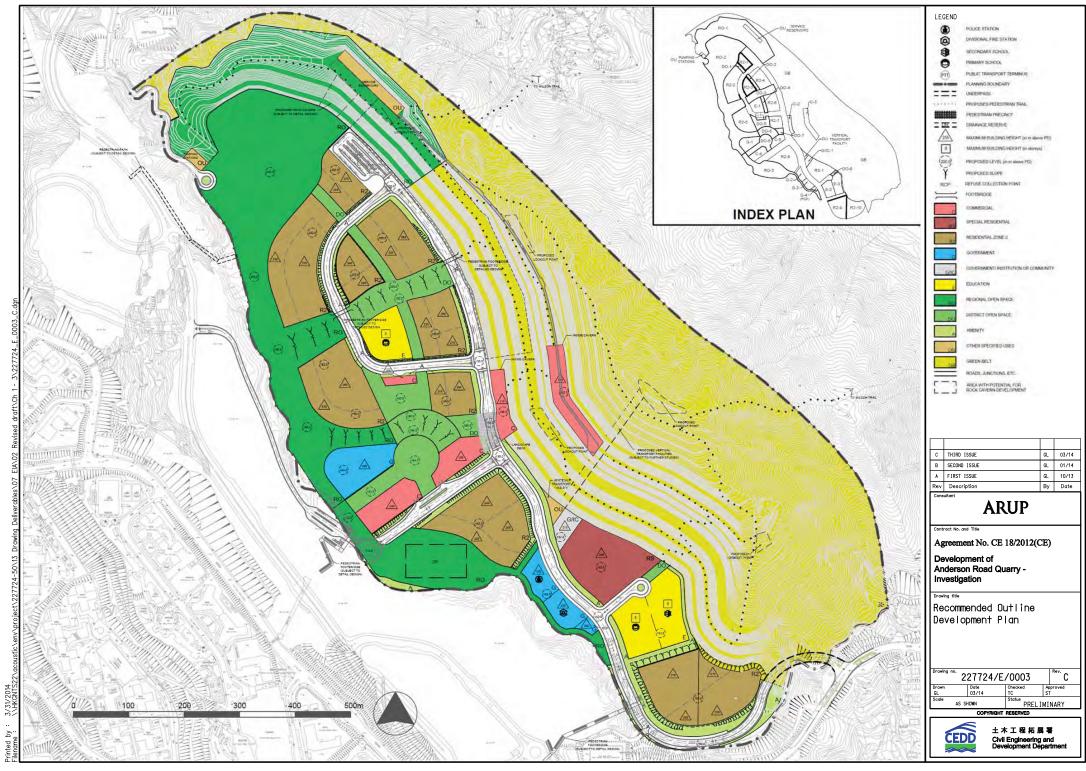
- 10.1.1 This is **64th** monthly EM&A report presenting the monitoring results and inspection findings for the Reporting Period from **1** to **31 July 2022**.
- 10.1.2 No 24-hour or 1-hour TSP monitoring and noise monitoring results that triggered the Action or Limit Levels were recorded. No NOEs or the associated corrective actions were therefore issued.
- 10.1.3 In the Reporting Period, no exceedance was recorded and no Notification of Exceedance was issued. Moreover, no noise complaints (which triggered Action Level) were received for the Project.
- 10.1.4 In the Reporting Period, no environmental complaint was received.
- 10.1.5 No notification of summons or successful prosecution was received under the Project.
- 10.1.6 During the Reporting Period, weekly joint site inspection by the RE, ET with the relevant Main-contractor was carried out for Contracts 1, 2, 3, 4 and 5 in accordance with the EM&A Manual stipulation whereas IEC performed monthly site inspection for both contracts. No non-compliance observed during the site inspection.

10.2 Recommendations


- 10.2.1 During wet season, the Contractors are reminded to pay special attention on water quality mitigation measures and should fully implement the measures as recommended in the EM&A Manual, in particular to prevent muddy water or other water pollutants from site surface overflow to public area should be properly maintained.
- 10.2.2 Since construction site is highly visible to the resident at nearby estates, the Contractors should pay special attention on potential environmental impact generated by the site activities and adhere implement adequate air quality and noise mitigation measures as far as practicable to reduce the impact to the public.
- 10.2.3 Construction noise is one of the key environmental issues during construction work of the Project. Noise mitigation measures such as using quiet plants and noise barriers shall be implemented where practicable according to the EM&A manual.
- 10.2.4 In addition, the Contractors should ensure all effluent discharge shall be fulfilled the Technical Memorandum of Effluent Discharged into Drainage and Sewerage Systems, inland and Coastal Waters criteria or relevant discharge license requirement.
- 10.2.5 Mosquito control measures should be continued to prevent mosquito breeding on site.

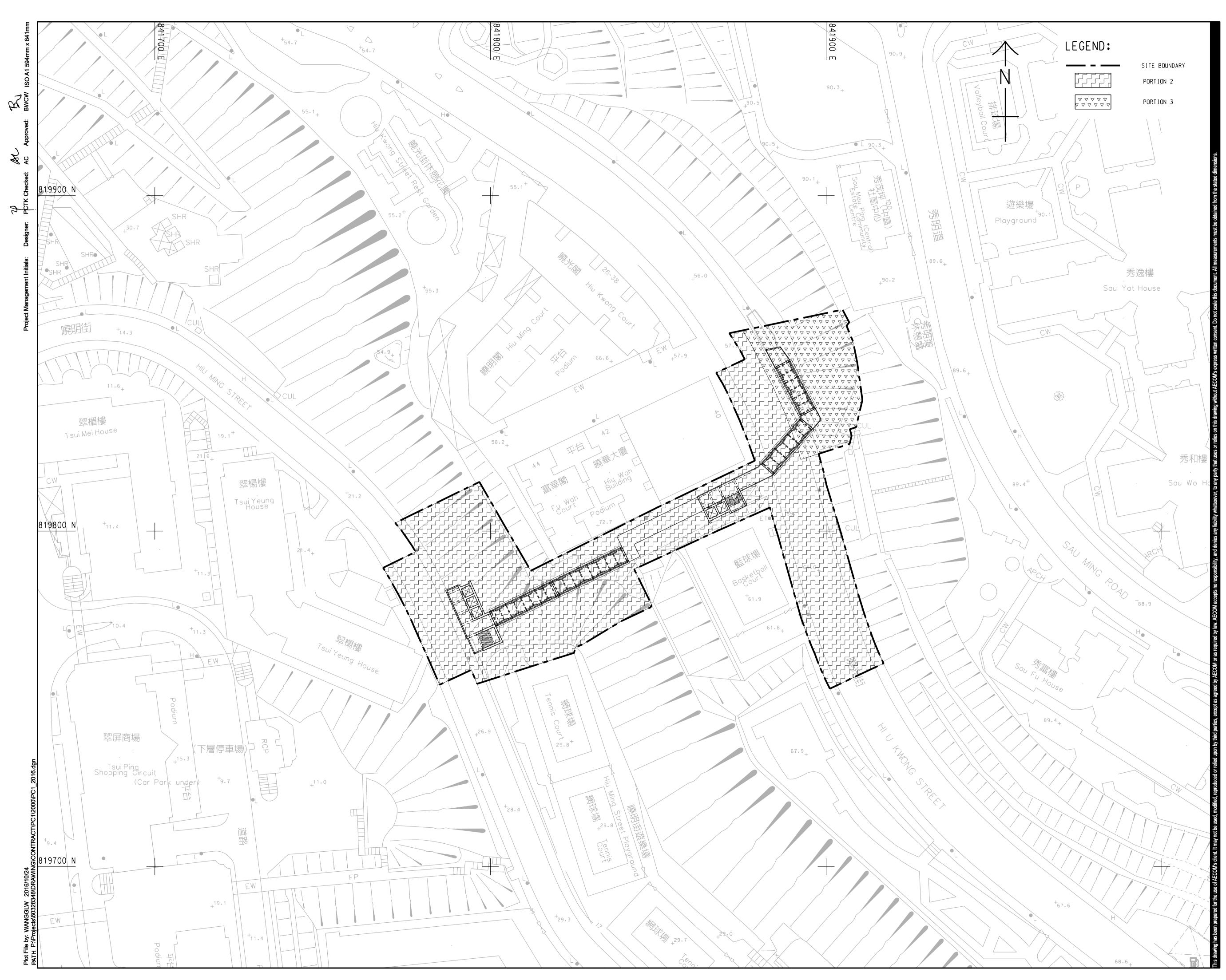
Appendix A

Layout plan of the Project


Contract Packages

Layout plan of Contract 1 (N/2016/01)

 $Z: Jobs \\ 2016 \\ TCS00864 (CEDD) \\ 600 \\ EM\&A Report Submission \\ Monthly EM\&A Report \\ 2022 \\ July 2022 \\ R0579v \\ 2.docx \\ 2.docx \\ 2.docx \\ 2.docx \\ 2.docx \\ 2.docx \\ 2.$



Printed by

Layout plan of Contract 2 (NE/2016/05)

Z:\Jobs\2016\TCS00864 (CEDD)\600\EM&A Report Submission\Monthly EM&A Report\2022\July 2022\R0579v2.docx

PROJECT _{項目}

DEVELOPMENT OF ANDERSON ROAD QUARRY SITE - INVESTIGATION, DESIGN AND CONSTRUCTION

CONTRACT TITLE PEDESTRIAN CONNECTIVITY FACILITIES WORKS PHASE 1

CLIENT 業主

上木工程拓展署
 Civil Engineering and
 Development Department

CONSULTANT 工程顧問公司

AECOM Asia Company Ltd. www.aecom.com

SUB-CONSULTANTS 分判工程顧問公司

ISSUE/REVISION 修訂

			M	
-	OCT. 16	TENDER DRAWING	AC	
I/R 修訂	DATE 日期	DESCRIPTION 內容摘要	CHK. 複核	
				

STATUS 階段

SCALE 比例

A1 1 : 500

KEY PLAN A1 1 : 60000 索引圖

NGAU TAU KOK

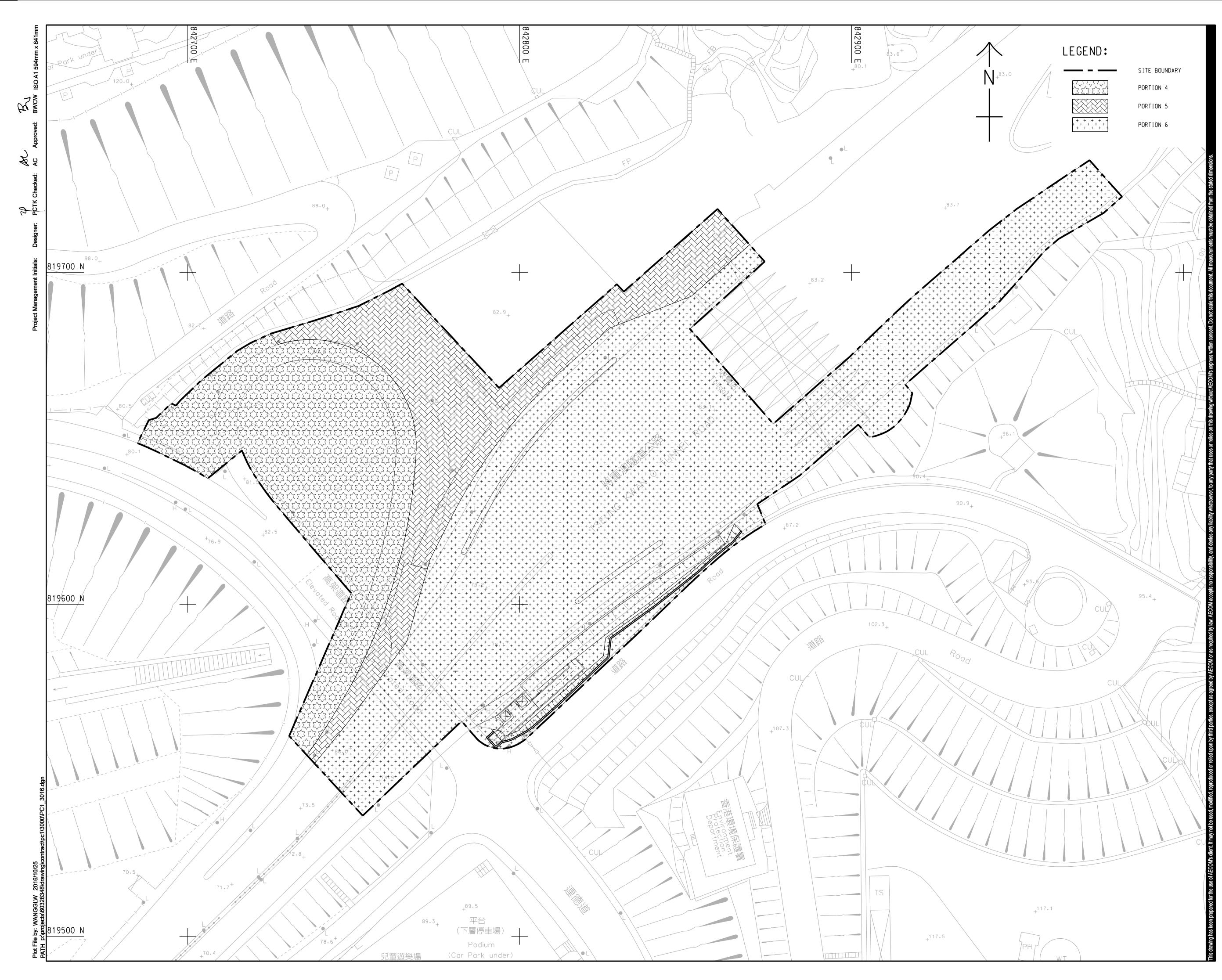
SHEET NUMBER 岡紙編號

CONTRACT NO. ^{合約編號}

TSUI LAM

DIMENSION UNIT ^{尺寸單位}

METRES


60328348

PROJECT NO. _{項目編}號

NE/2016/05 SHEET TITLE 圖紙名稱

E2-C1-E3 - PORTION OF SITE

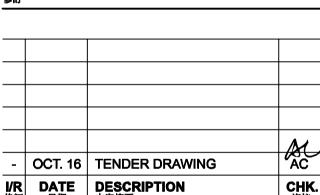
60328348/PC1/2016

PROJECT _{項目}

DEVELOPMENT OF ANDERSON ROAD QUARRY SITE - INVESTIGATION, DESIGN AND CONSTRUCTION

CONTRACT TITLE PEDESTRIAN CONNECTIVITY FACILITIES WORKS PHASE 1

CLIENT 業主



CONSULTANT 工程顧問公司

AECOM Asia Company Ltd. www.aecom.com

SUB-CONSULTANTS 分判工程顧問公司

ISSUE/REVISION 修訂

I/R 修訂	DATE 日期	DESCRIPTION 內容摘要	CHK. 複核
-	OCT. 16	TENDER DRAWING	AC
			M

SCALE _{比例}

A1 1 : 500

NGAU TAU KOK

KWUN TONG

KEY PLAN A1 1 : 60000 索引圖

	00T 40		- Al
	OCT. 16		
I/R 修訂	DATE 日期	DESCRIPTION 內容摘要	CHK. 複核
	ATUO		I

			- K
-	OCT. 16	TENDER DRAWING	ĂC
I/R 修訂	DATE 日期	DESCRIPTION 內容摘要	CHK. 複核
074700			

-	OCT. 16	TENDER DRAWING	AC	
/ / 修訂	DATE 日期	DESCRIPTION 內容摘要	CHK. 複核	
etatue				

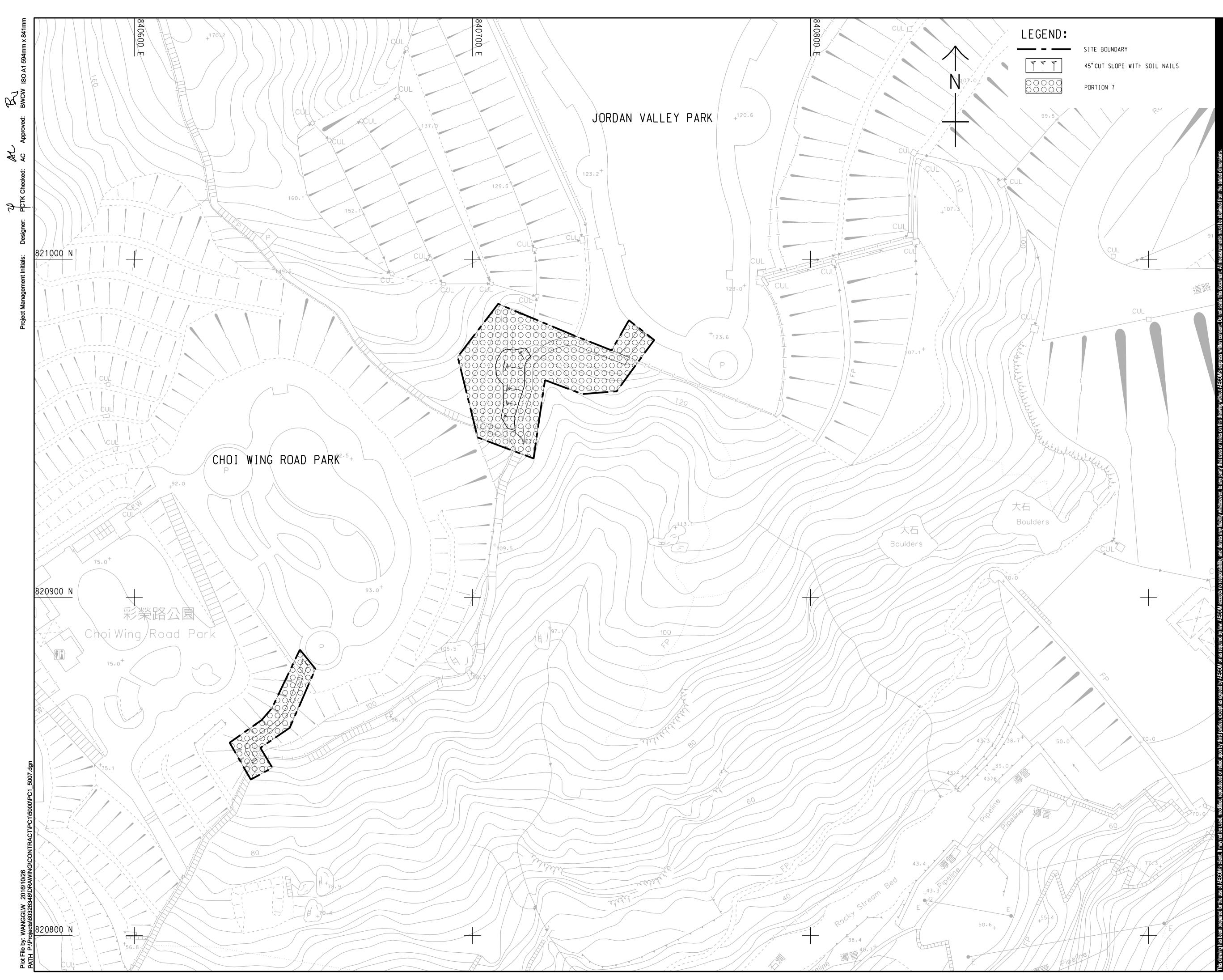
STATUS ^{階段}

60328348/PC1/3016

DIMENSION UNIT 尺寸單位

METRES

60328348


SHEET TITLE ^{圖紙名稱}

PROJECT NO. 項目編號

NE/2016/05

E12 AND BBI - PORTION OF SITE

SHEET NUMBER ^{國紙編號}

PROJECT ^{項目}

DEVELOPMENT OF ANDERSON ROAD QUARRY SITE - INVESTIGATION, DESIGN AND CONSTRUCTION

CONTRACT TITLE PEDESTRIAN CONNECTIVITY FACILITIES WORKS PHASE 1

CLIENT 業主

上木工程拓展署
 Civil Engineering and
 Development Department

CONSULTANT 工程顧問公司

AECOM Asia Company Ltd. www.aecom.com

SUB-CONSULTANTS 分判工程顧問公司

ISSUE/REVISION 修訂

			M
-	OCT. 16	TENDER DRAWING	AC
I/R	DATE	DESCRIPTION	СНК

		•	
I/R 修訂	DATE 日期	DESCRIPTION 內容摘要	CHK. 複核
-	OCT. 16	TENDER DRAWING	AC
			M

			M
-	OCT. 16	TENDER DRAWING	ÂC
I/R 修訂	DATE 日期	DESCRIPTION 內容摘要	CHK. 複核
074700			

STATUS 階段

SCALE 比例

A1 1 : 500

NGAU CHT WAN

KOWLOON BAY

PROJECT NO. ^{項目編}號

SHEET TITLE 圖紙名稱

60328348

KEY PLAN A1 1 : 60000 家引圖

1

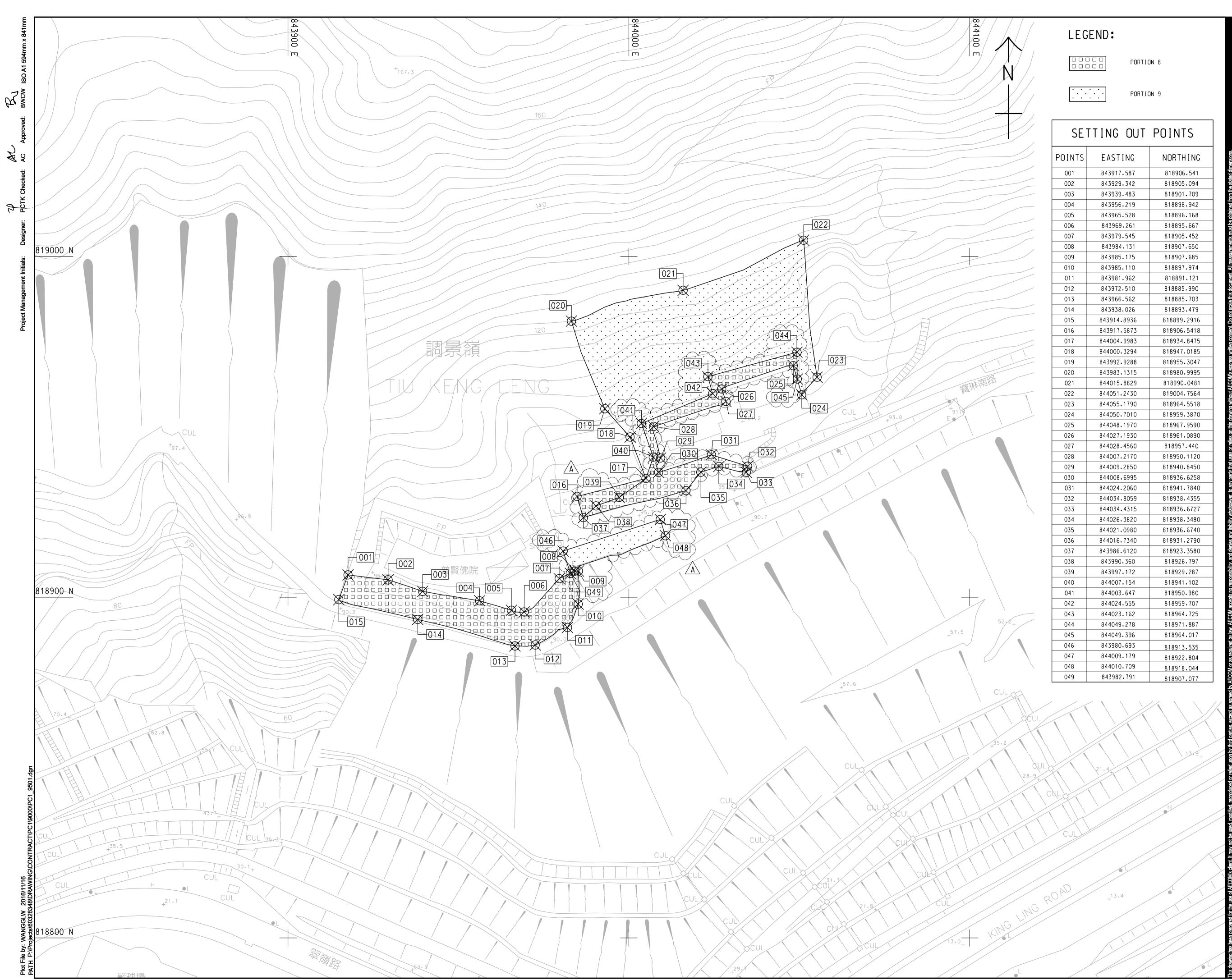
KWUN TONG

GREEN ROUTE - PORTION OF SITE

-	OCT. 16	TENDER DRAWING	AC
I/R 修訂	DATE 日期	DESCRIPTION 內容摘要	CHK. 複核
La 49	170	name	1218

DIMENSION UNIT 尺寸單位

METRES


LAMTIN

CONTRACT NO. ^{合約編號}

NE/2016/05

•
AC
CHK. 複核

SHEET NUMBER 圖紙編號 60328348/PC1/5007

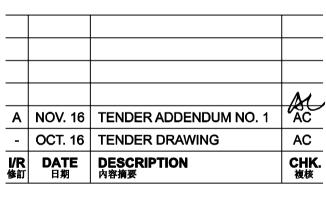
SE	ITING UUT	PUINIS
OINTS	EASTING	NORTHING
001	843917.587	818906.541
002	843929.342	818905.094
003	843939.483	818901.709
004	843956.219	818898.942
005	843965.528	818896.168
006	843969.261	818895.667
007	843979.545	818905.452
008	843984.131	818907.650
009	843985.175	818907.685
010	843985.110	818897.974
011	843981.962	818891.121
012	843972.510	818885.990
013	843966.562	818885.703
014	843938.026	818893.479
015	843914.8936	818899.2916
015		
	843917.5873	818906.5418
017	844004.9983	818934.8475
018	844000.3294	818947.0185
019	843992.9288	818955.3047
020	843983.1315	818980.9995
021	844015.8829	818990.0481
022	844051.2430	819004.7564
023	844055.1790	818964.5518
024	844050.7010	818959.3870
025	844048.1970	818967.9590
026	844027.1930	818961.0890
027	844028.4560	818957.440
028	844007.2170	818950.1120
029	844009.2850	818940.8450
030	844008.6995	818936.6258
031	844024.2060	818941.7840
032	844034.8059	818938.4355
033	844034.4315	818936.6727
034	844026.3820	818938.3480
035	844021.0980	818936.6740
036	844016.7340	818931.2790
037	843986.6120	818923.3580
038	843990.360	818926.797
039	843997.172	818929.287
040	844007.154	818941.102
041	844003.647	818950.980
042	844024.555	818959.707
043	844023.162	818964.725
044	844049.278	818971.887
045	844049.396	818964.017
046	843980.693	818913.535
047	844009.179	
048	844010.709	818922.804
049	843982.791	818918.044

PROJECT ^{項目}

DEVELOPMENT OF ANDERSON ROAD QUARRY SITE - INVESTIGATION, DESIGN AND CONSTRUCTION

CONTRACT TITLE PEDESTRIAN CONNECTIVITY FACILITIES WORKS PHASE 1

CLIENT _{業主}


た木工程拓展署
 Civil Engineering and
 Development Department

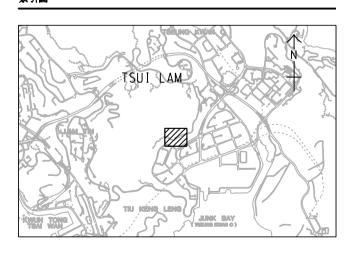
CONSULTANT 工程顧問公司

AECOM Asia Company Ltd. www.aecom.com

SUB-CONSULTANTS 分判工程顧問公司

ISSUE/REVISION 修訂

STATUS 階段


DIMENSION UNIT ^{尺寸單位}

METRES

A1 1 : 500

SCALE 比例

KEY PLAN A1 1 : 60000 家引國

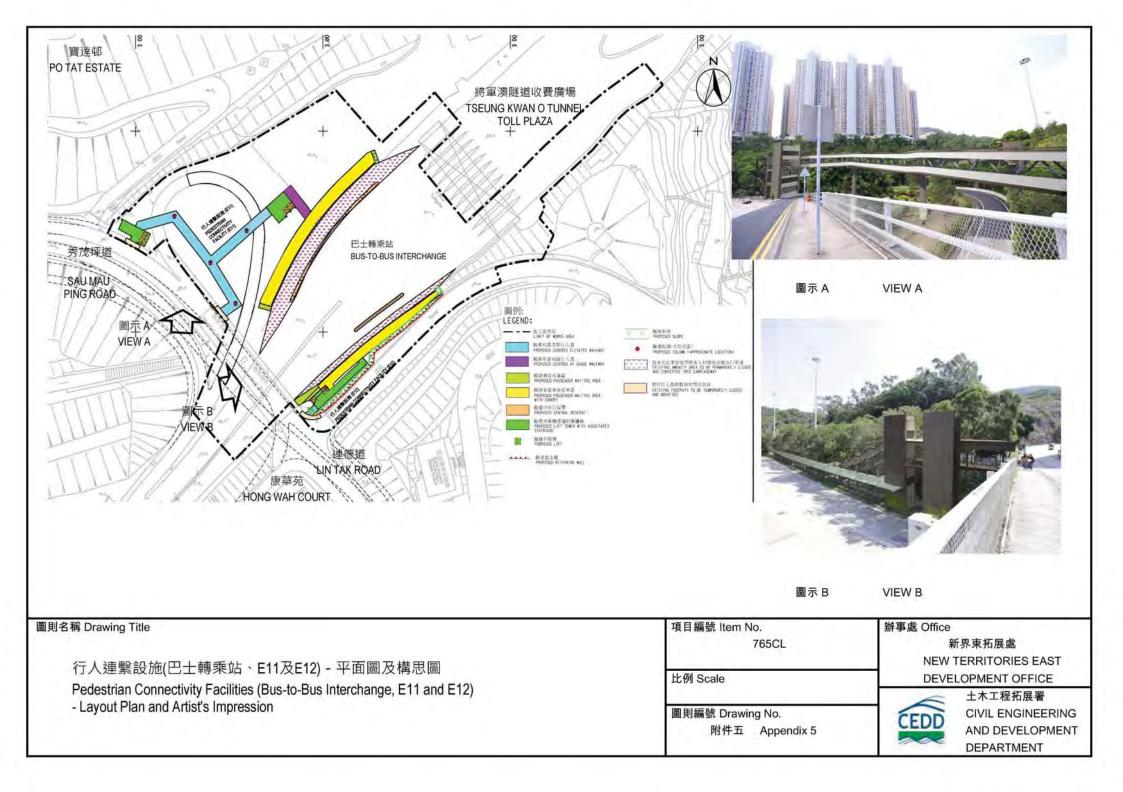
PROJECT NO. _{項目編}號

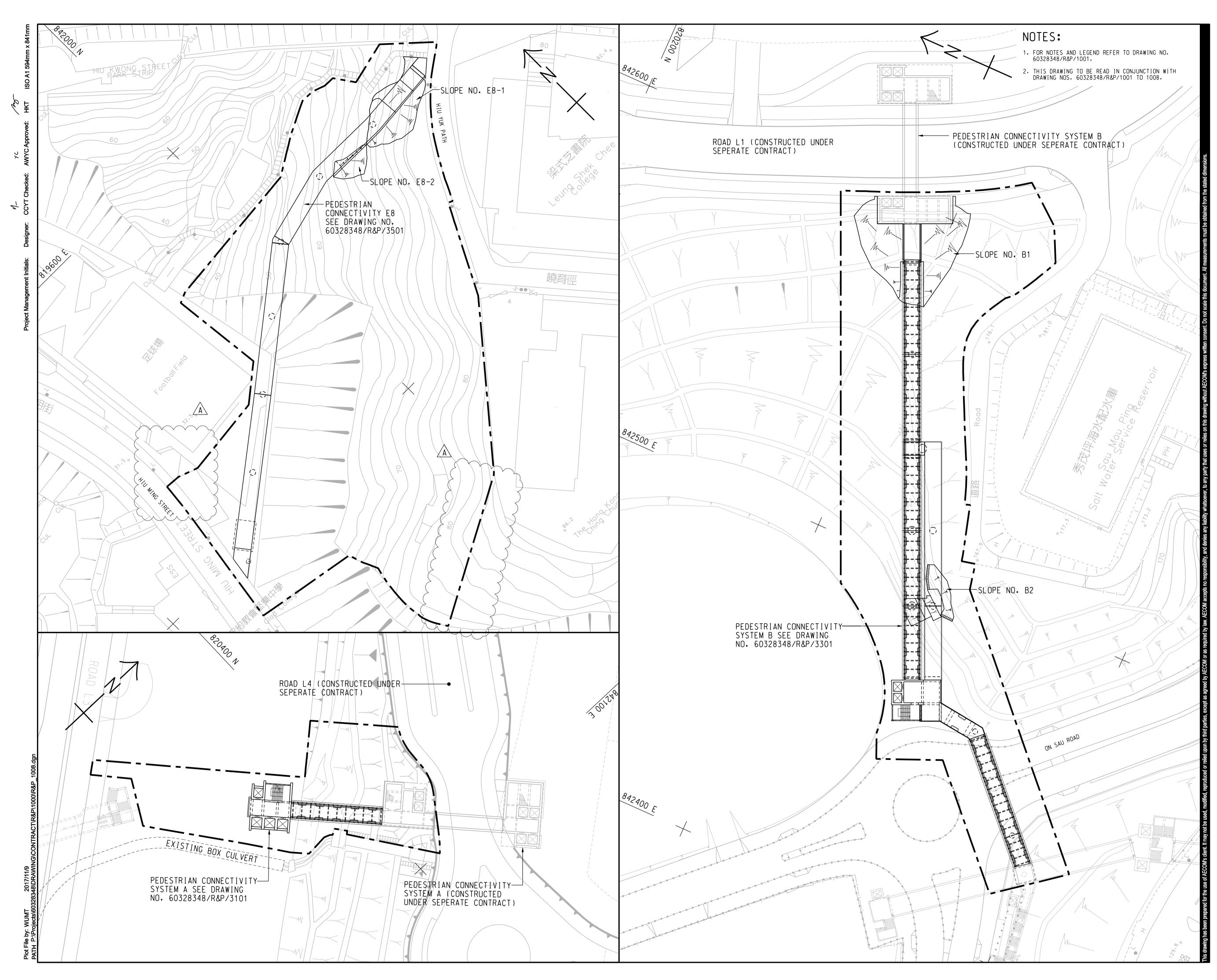
CONTRACT NO. ^{合約編號}

60328348

NE/2016/05

SHEET TITLE 圖紙名稱


INFRASTRUCTURAL WORKS AT PO LAM ROAD SOUTH TIU KENG LENG – PORTION OF SITE


SHEET NUMBER 圖紙編號

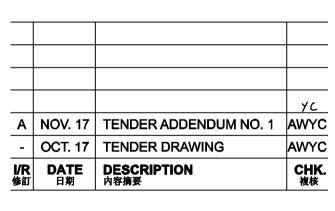
60328348/PC1/9501A

Layout plan of Contract 3 (NE/2017/03) (Non-Designated Area)

PROJECT ^{項目}

DEVELOPMENT OF ANDERSON ROAD QUARRY SITE - INVESTIGATION, DESIGN AND CONSTRUCTION

CONTRACT TITLE DEVELOPMENT OF ANDERSON ROAD QUARRY SITE - ROAD IMPROVEMENT WORKS AND PEDESTRIAN CONNECTIVITY FACILITIES WORKS PHASE 2A CLIENT _{業主}


全林工程拓展署 Civil Engineering and Development Department

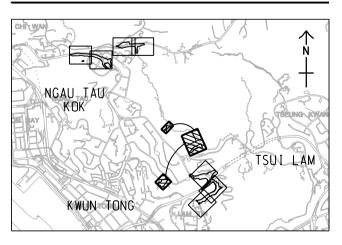
CONSULTANT 工程顧問公司

AECOM Asia Company Ltd. www.aecom.com

SUB-CONSULTANTS 分判工程顧問公司

ISSUE/REVISION 修訂

STATUS ^{階段}


SCALE 比例

A1 1 : 500

DIMENSION UNIT _{尺寸單位}

METRES

KEY PLAN A1 1 : 60000 家引國

PROJECT NO. _{項目編}號

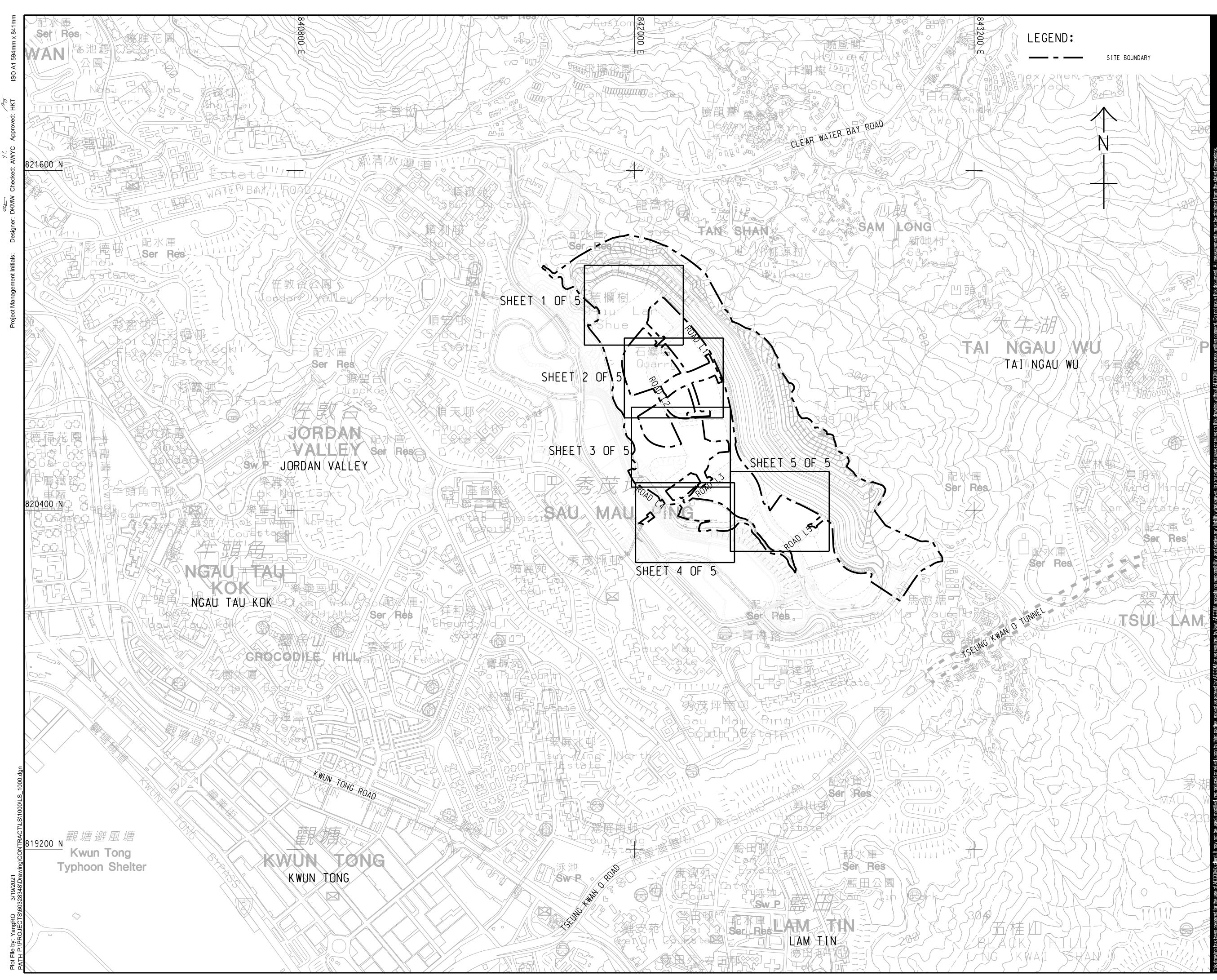
SHEET 8 OF 8

60328348

SHEET TITLE 圖紙名稱

SHEET NUMBER 圖紙編號

60328348/R&P/1008A


CONTRACT NO. ^{合約編}號

NE/2017/03

GENERAL LAYOUT

Layout plan of Contract 4 (ED/2020/02)

γC

PROJECT

DEVELOPMENT OF ANDERSON ROAD QUARRY SITE - INVESTIGATION, DESIGN AND CONSTRUCTION

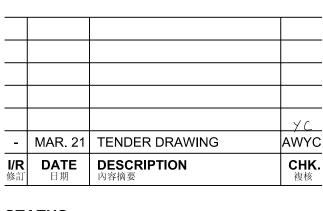
CONTRACT TITLE DEVELOPMENT OF ANDERSON ROAD QUARRY SITE - INFRASTRUCTURE, GREENING AND LANDSCAPE WORKS

CLIENT

 CEDD

 土木工程拓展署

 CEDD


 Civil Engineering and Development Department

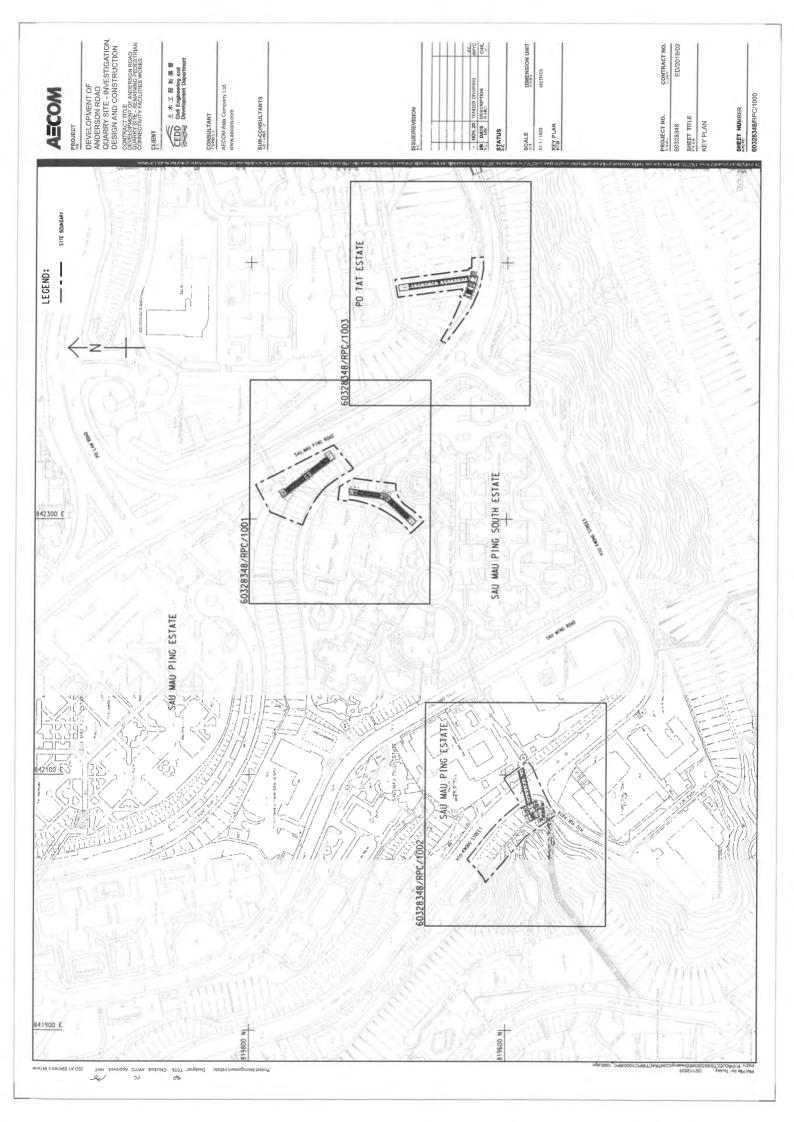
CONSULTANT

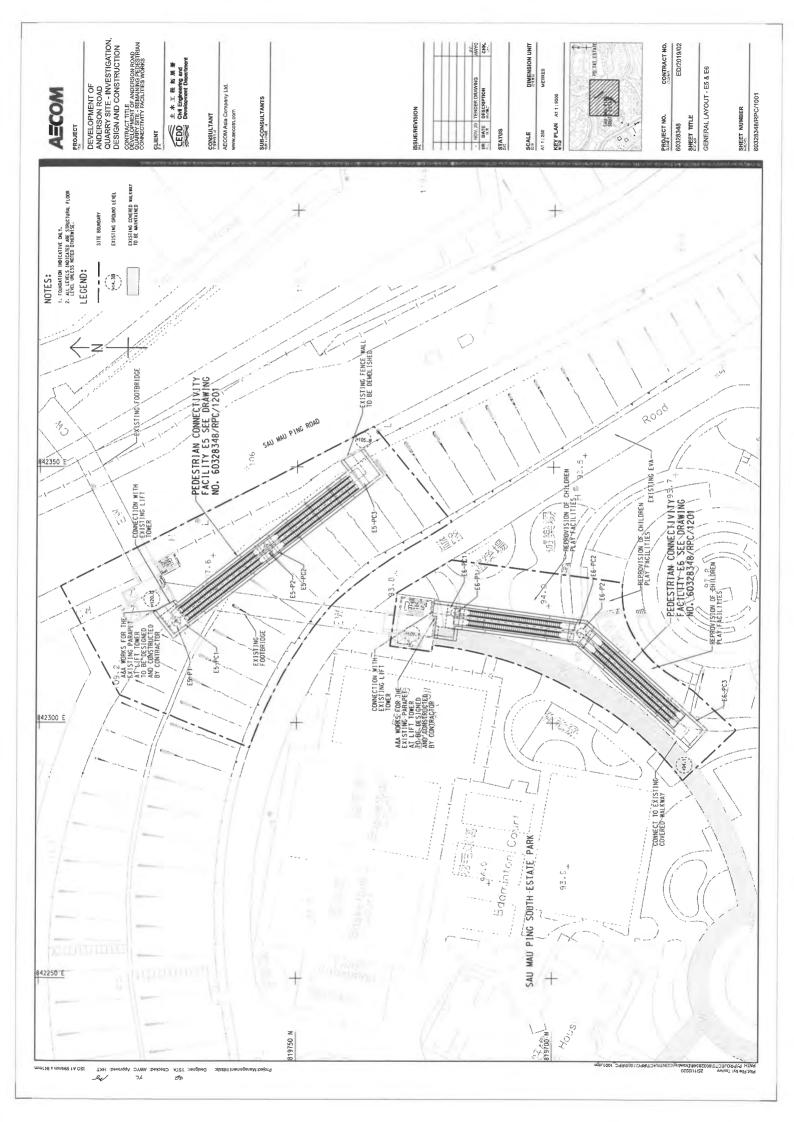
AECOM Asia Company Ltd. www.aecom.com

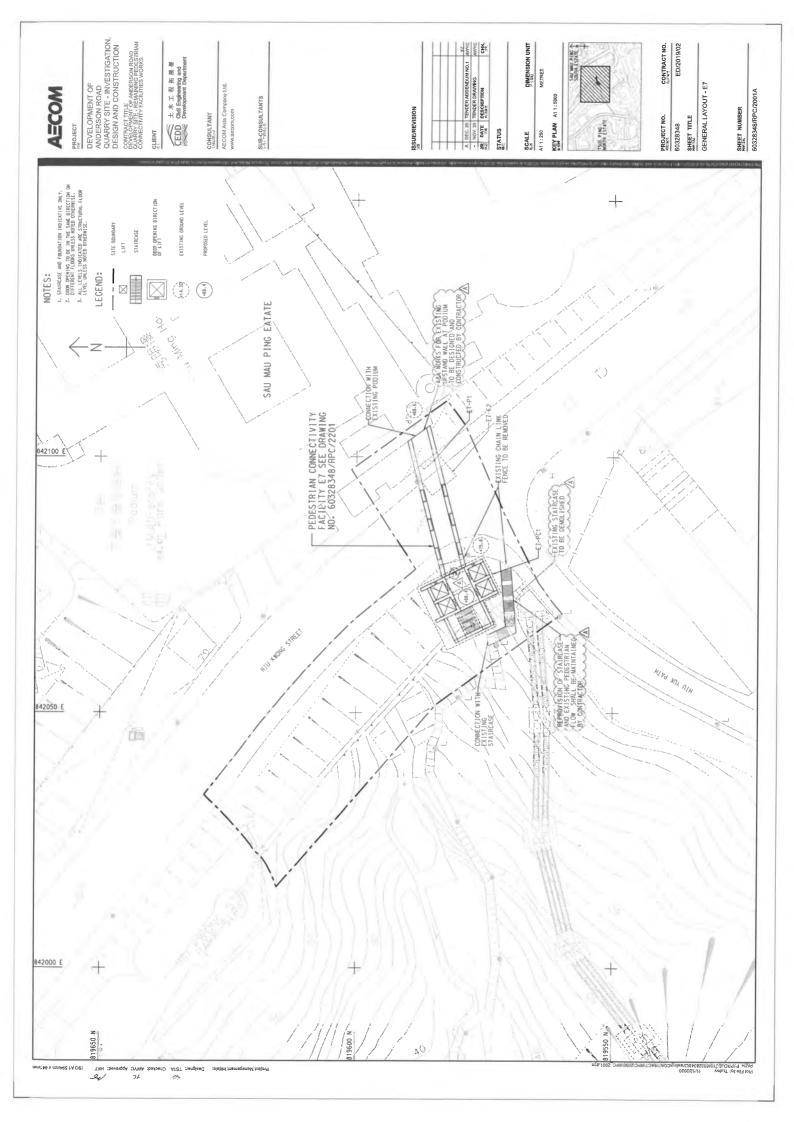
SUB-CONSULTANTS 分判工程顧問公司

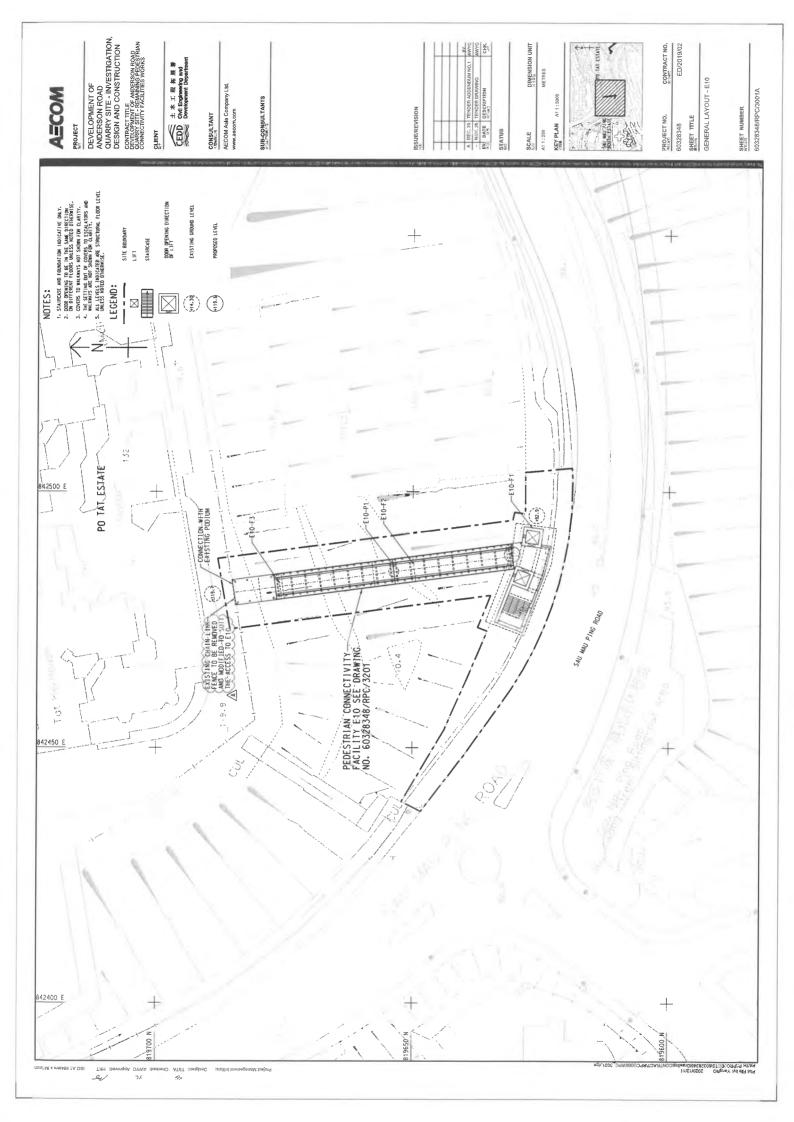
ISSUE/REVISION

SCALE 比例	DIMENSION UNIT 尺寸單位
A1 1 : 6000	METRES
KEY PLAN _{委리國}	

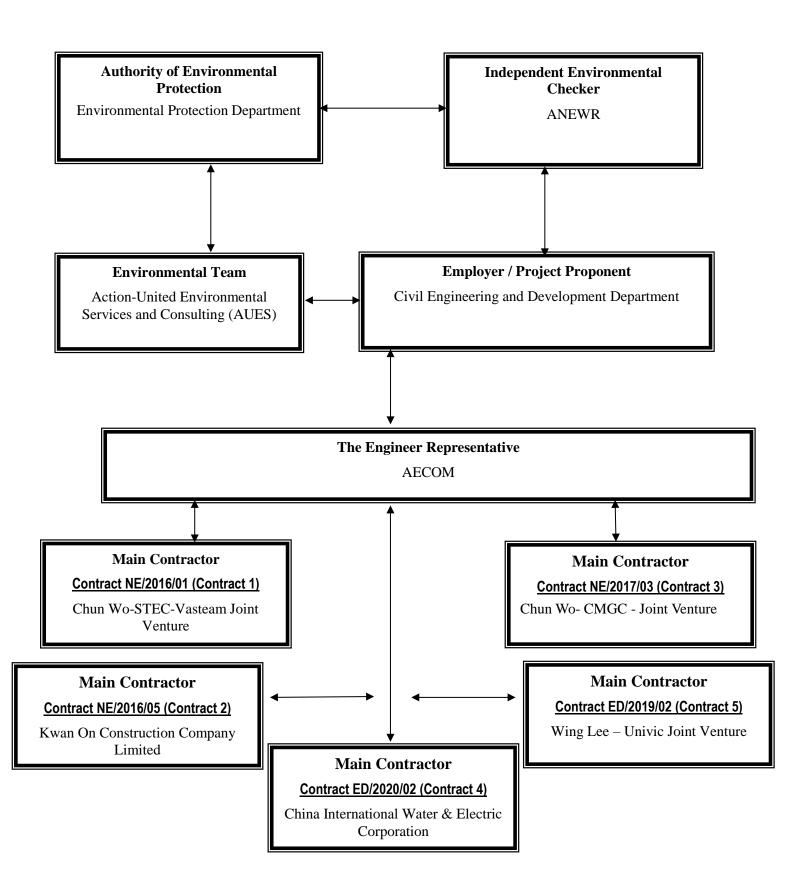

PROJECT NO. ^{項目編號} CONTRACT NO. _{合約編號} ED/2020/02 60328348 **SHEET TITLE** 圖紙名稱 KEY PLAN


SHEET NUMBER 圖紙編號


60328348/LS/1000



Layout plan of Contract 5 (ED/2019/02)



Appendix B

Project Organization Structure

Project Organization Structure

Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
CEDD	Engineer	S W Lam, Sam	3842 7087	2739 0076
AECOM	Chief Resident Engineer	Lee, Yu Ching Paul	5723 6880	2473 3221
AECOM	Senior Resident Engineer	Li, Ling Tommy	9389 8792	2473 3221
ANEWR	Independent Environmental Checker	James Choi	2618 2836	3007 8648
CSVJV	Project Manager	William Leung	2638 7181	2744 6937
CSVJV	Site Agent	TY Leung	2638 7181	2744 6937
CSVJV	Project Environmental Manager	Jimmy Cheng	2638 7181	2744 6937
CSVJV	Environmental Officer	Ken Chu	2638 7181	2744 6937
AUES	Environmental Team Leader	T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079

Contact Details of Key Personnel for Contract 1 – NE/2016/01

Legend:

CEDD (Employer) – Civil Engineering and Development Department

AECOM (Engineer) – AECOM Asia Co. Ltd.

CSVJV (Main Contractor) – Chun Wo-STEC-Vasteam Joint Venture

ANEWR (IEC) – ANewR Consulting Limited

Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
CEDD	Engineer	S W Lam, Sam	3842 7087	2739 0076
AECOM	Chief Resident Engineer	Lee, Yu Ching Paul	5723 6880	2473 3221
AECOM	Senior Resident Engineer	Bill Hon	5599 1466	2473 3221
ANEWR	Independent Environmental Checker	James Choi	2618 2836	3007 8648
KOCCL	Project Director	Ambrose Kwong	2889 2675	2558 6900
KOCCL	Site Agent	Mr. Albert PK Ng	9150 1523	2558 6900
KOCCL	Safety and Environmental Manager	Joly C K Kwong	6111 5711	2558 6900
KOCCL	Environmental Officer	Kenny Chan	5542 4335	2558 6900
AUES	Environmental Team Leader	T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079

Contact Details of Key Personnel for Contract 2 – NE/2016/05

Legend:

CEDD (Employer) – Civil Engineering and Development Department

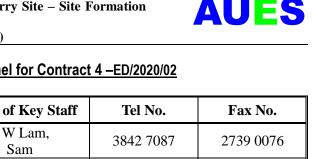
AECOM (Engineer) – AECOM Asia Co. Ltd.

KOCCL (Main Contractor) -Kwan On Construction Company Limited

ANEWR (IEC) – ANewR Consulting Limited

Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
CEDD	Engineer	S W Lam, Sam	3842 7087	2739 0076
AECOM	Chief Resident Engineer	Lee, Yu Ching Paul	5723 6880	2473 3221
AECOM	Senior Resident Engineer	Brad Chan	5506 0068	2473 3221
ANEWR	Independent Environmental Checker	James Choi	2618 2836	3007 8648
CW – CMGC - JV	Construction Manager	William Leung	9464 1392	3965 9900
CW – CMGC - JV	Site Agent	Yu, Chi Kuen Paul	9456 9819	3965 9900
CW – CMGC - JV	Environmental Officer	King Lam	9570 6187	3965 9900
CW – CMGC - JV	Environmental Supervisor	Anna Tsang	9333 8499	3965 9900
AUES	Environmental Team Leader	T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079

Contact Details of Key Personnel for Contract 3 -NE/2017/03


Legend:

CEDD (Employer) – Civil Engineering and Development Department

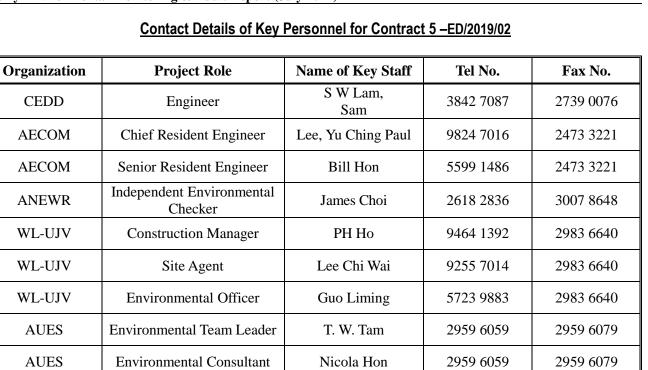
AECOM (Engineer) – AECOM Asia Co. Ltd.

CW – CMGC - JV (Main Contractor) – Chun Wo- CMGC - Joint Venture

ANEWR (IEC) – ANewR Consulting Limited

Contact Details of Key Personnel for Contract 4 - ED/2020/02

Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
CEDD	Engineer	S W Lam, Sam	3842 7087	2739 0076
AECOM	Chief Resident Engineer	Lee, Yu Ching Paul	5723 6880	2473 3221
AECOM	Senior Resident Engineer	Li, Ling Tommy	9389 8792	2473 3221
ANEWR	Independent Environmental Checker	James Choi	2618 2836	3007 8648
CIWEC	Project Director	Leung, Siu Ming Wilson	5135 6590	2508 0987
CIWEC	Site Agent	Tam. Wing San Wilson	9031 5600	2508 0987
CIWEC	Environmental Officer	Cat Ng	6162 4944	2508 0987
AUES	Environmental Team Leader	T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079


Legend:

CEDD (Employer) – Civil Engineering and Development Department

AECOM (Engineer) – AECOM Asia Co. Ltd.

CIWEC (Main Contractor) – China International Water & Electric Corporation

ANEWR (IEC) – ANewR Consulting Limited

Ben Tam

2959 6059

AUES

2959 6079

Legend:

AUES

CEDD (Employer) – Civil Engineering and Development Department

Environmental Consultant

- AECOM (Engineer) AECOM Asia Co. Ltd.
- WL-UJV (Main Contractor) Wing Lee Univic Joint Venture
- ANEWR (IEC) -ANewR Consulting Limited
- AUES (ET) Action-United Environmental Services & Consulting

Appendix C

Construction Programme

- (a) Contract 1 (NE/2016/01)
- (b) Contract 2 (NE/2016/05)
- (c) Contract 3 (NE/2017/03)
- (d) Contract 4 (ED/2020/02)
- (e) Contract 5 (ED/2019/02)

Contract 1 (NE/2016/01)

CONTRACT NO.NE/2016/01 SITE FORMATION AND INFRASTRUCTURE WORKS FOR DEVELOPMENT OF ANDERSON ROAD QUARRY SITE 3-MONTH ROLLING PROGRAMME

	■ieB0 俊和 - 上隧 - 浩隆 聨 營							ON ROAD QUARRY SITE			
	CHUN WO - STEC - VASTEAM JOINT VENTURE							ROLLING PROGRAMMI	E		
Activity ID	Activity Name	BL Project Duration	BL Project Start	BL Project Finish	At Completion Duration	Start	Finish	2, 2022 May	Jun		Jul
	Sub-programme (June 2022 _0) _ccn _220617										
Fresh Water Purr	pping Station										
Stage 5 - ABWF,	Finishing & E&M										
FWP-1310A	(NOC[TBA]) 5th wave COVID19 affected to Pumping Station E&M works	0			69	28-Feb-22 A	24-May-22 A				
FWP-1320	Pumping Station E&M works	0			590	29-Jun-20 A	23-Jun-22		Pu	umping Station E&M wo	vrks
FWP-1322	Draw pits and cabling works (Pumping Station)	0			523	16-Sep-20 A	23-Jun-22		Dr	raw pits and cabling wor	ks (Pumping Station)
FWP-1330	E&M T&C works (Pumping Station)	0			26	07-Jul-22	05-Aug-22				
Salt Water Reserv	<i>i</i> oir										
ABWF, Finishing	g & E&M										
SWR-1410A	(NOC[TBA]) 5th wave COVID19 affected to Saltwater Reservior E&M works	0			62	28-Feb-22 A	16-May-22 A	•			
SWR-1420	Saltwater Reservior E&M works	0			615	29-May-20 A	23-Jun-22		Sa	altwater Reservior E&M	works
SWR-1422	Draw pits and cabling works (Saltwater Reservior)	0			523	16-Sep-20 A	23-Jun-22		Dr	raw pits and cabling wor	rks (Saltwater Reservior)
Fresh Water Rese	arvoir										
ABWF, Finishing	g & E&M										
FWR-2000	Freshwater Reservior E&M works	0			514	12-Oct-20 A	07-Jul-22				Freshwater Reservior E&M works
Temporary DN4	50 Water Pipe at Anderson No.3 Reservoir										
FWR-2020	Pipe works	0			93	01-Mar-22 A	23-Jun-22		Pi	ipe works	
FWR-2040	Pipe testing	0			8	24-Jun-22	04-Jul-22			Pip	pe testing
FWR-2060	Pipe sterilization & water supply from Anderson Road to Reservior	0			11	05-Jul-22	16-Jul-22				Pipe sterilization & w
RWS Access Roa	d & External Works										
FWP-1430	CLP power supply duct	0			524	16-Sep-20 A	24-Jun-22			CLP power supply duct	
FWP-1440	Road Works & Fencing	0			103	25-Jun-22	27-Oct-22				
FWP-1450	Green Roof & Paving Area	0			88	20-Jul-22	02-Nov-22				
Pedestrian Conn	ection System A & B										
PC system B											
PCB-1090	System B - Backfill south tower	81	19-Aug-19	23-Nov-19	691	16-Feb-20 A	16-Jun-22		System B - Back	kfill south tower	
PCB-1100	System B - Backfill north tower	81	19-Aug-19	23-Nov-19	691	16-Feb-20 A	16-Jun-22		System B - Back	kfill north tower	
PCB-1120	System B - E&M	22	23-Sep-19	19-Oct-19	617	05-Jun-20 A	04-Jul-22			Sy	rstem B - E&M
PCB-1122	System B - energizing (by CLP)	0			19	21-Jul-22	11-Aug-22				
PCB-1130	System B - E&M T&C	24	21-Oct-19	16-Nov-19	436	02-Mar-21 A	18-Aug-22		_		
PCB-1140	System B - Lift installation	75	21-Oct-19	18-Jan-20	436	02-Mar-21 A	18-Aug-22				
PCB-1150	System B - Lift T&C	27	20-Jan-20	22-Feb-20	27	19-Aug-22	20-Sep-22				
PC system A											
PCA-1060	B5 - E&M and BS Works	0			296	02-Jul-21 A	29-Jun-22			B5 - E&M an	d BS Works
PCA-1070	B5 - ABWF Works	0			183	20-Dec-21 A	04-Aug-22				
PCA-1080	B5 - Testing & Commissioning	0			90	05-Aug-22	21-Nov-22				
PCA-1160	C1a - Back Fill Lift Tower (South) up wards Formation Level	0			201	18-Oct-21 A	22-Jun-22		C1a	a - Back Fill Lift Tower (S	outh) upwards Formation Level
PCA-1170	C1a - E&M and BS Works	0			185	22-Nov-21 A	09-Jul-22				C1a - E&M and BS Works
PCA-1180	C1a - ABWF Works	0			152	03-Jan-22 A	09-Jul-22				C1a - ABWF Works
PCA-1190	C1a - Testing & Commissioning	0			90	11-Jul-22	26-Oct-22				
Underpass Tunne											
East Portal											
TUN-3620	Tunnel - backfill to east portal	0			114	01-Apr-22 A	19-Aug-22				
VE Panels, Roa	d Works, E&M										
TUN-3530A	(NOC[TBA]) 5th wave COVID19 affected to works in Tunnel	0			88	28-Feb-22 A	16-Jun-22		(NOC[TBA]) 5th	wave COVID19 affected	t o works in Tunnel
Pla	nned Bar (WP) 💠 🔷 Planned Milestone (WP)					3-mon	th Roll	ing Programme		Date	C1-MPU202206
	ual Bar \blacklozenge \blacklozenge Milestone			Anderso	on Rd Sub-					15-Jun-22	
For	ecast Bar			15-Jun-		- 3. 5					
											·

隧道股份

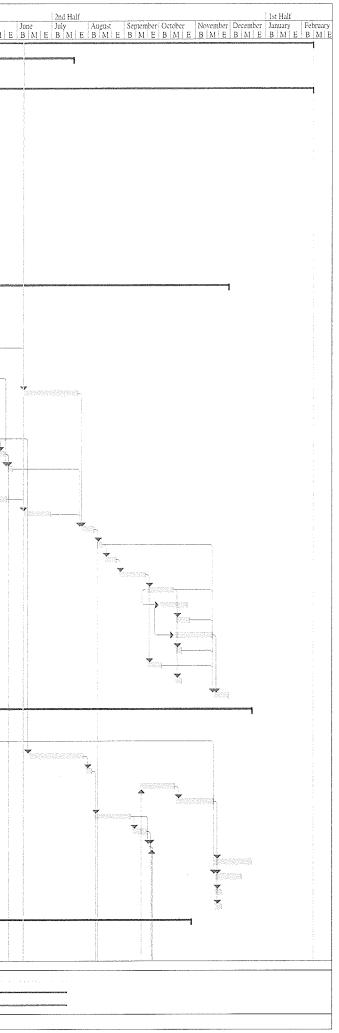
Qtr 3, 2022	ge 1 of 3	
Aug		Sep
E&M T&C works (Pumping	Station)	
water supply from Anderson Road to Reservior		
	rergizing (by CLP) System B - E&M T&C System B - Lift installation	1
B5 - ABWF Works		
	I Tunnel - backfill to east	portal
Revision	Checked	Approved

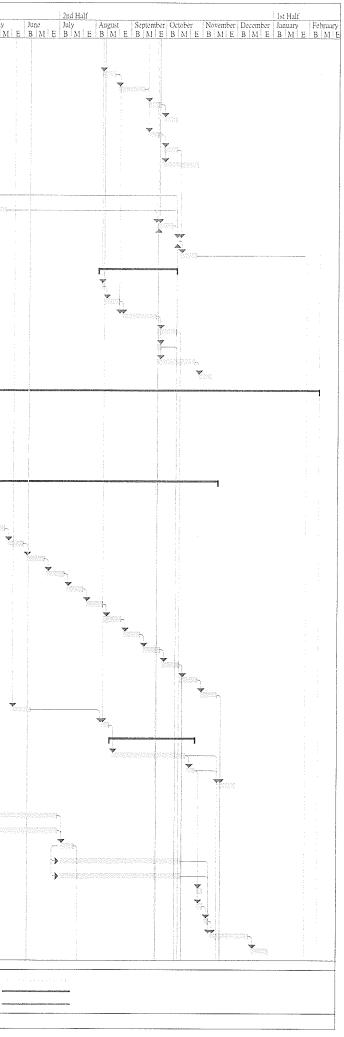
	使和-上隧-浩隆聯營 CHUN Wo - STEC - VASTAN JOINT VENTURE	CO	ANDERSON ROAD QUARRY SITE 3-MONTH ROLLING PROGRAMME								
rity ID	Activity Name	BL Project Duration		Project At Completion nish Duration	Start	Finish	2, 2022	has lot			
TUN-3540	Tunnel - FS main, Socket & AFA equipment	0 Duration	Start FI	494	19-Oct-20 A	20-Jun-22	Мау	Jun Jul Tunnel - FS main, Socket & AFA equipment			
TUN-3542	Tunnel - Install 150mm dia. FS pipe	0		8	07-Jul-22	15-Jul-22	_	Tunnel - I			
TUN-3550	Underpass L1 paving, funiture, marking, signage from East Portal	0		507	19-Oct-20 A	06-Jul-22		Underpass L1 paving, funitu			
TUN-3560	Tunnel - E&M 2nd Fix (Lighting & Equipment)	0		494	19-Oct-20 A	20-Jun-22		Tunnel - E&M 2nd Fix (Lighting & Equipment)			
TUN-3570	Underpass ABWF works	0		477	09-Nov-20 A	20-Jun-22		Underpass ABWF works			
TUN-3580	Tunnel - E&M Final Fix (Equipment connection & testing)	0		477	09-Nov-20 A	20-Jun-22		Tunnel - E&M Final Fix (Equipment connection & testing)			
TUN-3590	Tunnel - T&C & Statutory inspection	0		24	16-Jul-22	12-Aug-22	-				
TUN-3610	Tunnel - Construct retaining wall bay14	0		12	03-May-22 A	16-May-22 A					
TUN-3630	Tunnel - bituminous paving	0		24	16-Jul-22	12-Aug-22	_				
oad L4 (RWA18	8, Noise Barrier, RWA12, Utilities & Road Works)										
•	ting Retaining Wall R10										
L4-4430	RWA10 - construct U channel & footpath	0		120	01-Apr-22 A	26-Aug-22					
	·			120	017012270	20710922					
Road Works - D	L4 (Drainage) - Backfill for water main CH0 to CH200	0		388	02-Mar-21 A	22-Jun-22		L4 (Drainage) + Backfill for water main CH0 to CH200			
L4-4260 L4-4280	L4 (Drainage) - Backfill for water main CHU to CH200 L4 (Drainage) - Excavate & lay drain CH250 to CH300	0			02-Mar-21 A	22-Jun-22 22-Jun-22		L4 (Drainage) Excavate & lay drain CH250 to CH300			
				388				L4 (Drainage) Excavate & lay drain CH350 to CH400			
L4-4300	L4 (Drainage) - Excavate & lay drain CH350 to CH400	0		388	02-Mar-21 A	22-Jun-22					
L4-4310	L4 (Drainage) - Backfill for water main CH200 to CH400	0		165	29-Nov-21 A	22-Jun-22		L4 (Drainage) + Backfill for water main CH200 to CH400			
Watermain & Ut											
L4-4320	L4 (Watermain & UU) - Constuct watermain & UU CH0 to CH200	0		151	15-Dec-21 A	22-Jun-22		L4 (Watermain & UU) - Constuct watermain & UU CH0 to			
L4-4330	L4 (Watermain & UU) - Constuct watermain & UU CH200 to CH400	0		151	15-Dec-21 A	22-Jun-22		L4 (Watermain & UU) - Constuct watermain & UU CH20			
Road Formatior	n										
L4-4410	L4 (road) - Kerb laying	0		98	19-Feb-22 A	20-Jun-22		L4 (road) - Kerb laying			
L4-4420	L4 (road) - Paving, cycle track, marking, signage, lighting	0		85	15-Mar-22 A	28-Jun-22		L4 (road) - Paving, cycle track, marking, sig			
Road Works L5,I	L1 east (between Junction L3 & L5)										
Road L1 east pa	art 2 (L5 toward PC system B)										
RL1b-1040	Road L1 east 2 - ducting for Street Lighting	0		738	19-Dec-19 A	18-Jun-22		Road L1 east 2 - ducting for Street Lighting			
RL1b-1050	Road L1 east 2 - Road Pavement	0		645	17-Apr-20 A	18-Jun-22		Road L1 east 2 - Road Pavement			
RL1b-1060	Road L1 east 2 - Landscape funiture	0		635	13-Jun-20 A	02-Aug-22					
Road L1 east pa	art 3 (Junction L3 toward L5)										
RL1c-1060	Road L1 east 2 - Landscape funiture	0		635	13-Jun-20 A	02-Aug-22					
Works for USR1	π										
USRT10030	Cable laying (by CLP)	0		14	16-Jun-22	02-Jul-22		Cable laying (by CLP)			
USRT10050	T&C & Statutory inspection	0		25	04-Jul-22	01-Aug-22	-				
Road Works											
RL1-2010	Carriageway works (L1 junction L3)	0		102	03-May-22 A	31-Aug-22					
RL1-2030	Footpath & cycle track (L1 junction L3)	0		50	03-Aug-22	30-Sep-22	-				
RL1-2070	Carriageway works (Road L2 & L3)	0		50	03-Aug-22	30-Sep-22	-				
RL1-2070	Footpath & cycle track (Road L2 & L3)	0		52	01-Sep-22	03-Nov-22	-				
RL1-2090		0		77		20-Jul-22					
	Lay power cable (L1 West Corner) (by CLP)				15-Apr-22 A						
RL1-2150	Lay gasmain (L1 West Corner) (by Towngas)	0		77	15-Apr-22 A	20-Jul-22					
RL1-2170	Carriageway works (L1 West Corner)	0		50	21-Jul-22	17-Sep-22					
RL1-2190	Footpath & cycle track (L1 West Corner)	0		50	19-Aug-22	19-Oct-22					
RL1c-1140	Road L1 west 1 - Landscape funiture	0		333	21-Jun-21 A	02-Aug-22					
RL1c-1150	Road L1 west 1 - E&M works	0		144	11-Apr-22 A	05-Oct-22					
RL3-2010	Carriageway works (Road L3)	0		102	03-May-22 A	31-Aug-22					
Act	anned Bar (WP) tual Bar recast Bar			nderson Rd Sub-j 5-Jun-22		h Roll	ing Programme	Date			

CO	NTRACT	NO.NE/	2016/01 S			ON AND INFRASTRUCTUR	E WORKS	5 FOI	R DEV	ELOPMEN	T OF			
						ON ROAD QUARRY SITE ROLLING PROGRAMME						Pa	nge 2 of 3	
roject ation	BL Project Start	BL Project Finish	At Completion Duration	Start	Finish	2, 2022 May	Jun			Jul		Qtr 3, 2022 Aug		Sep
0			494	19-Oct-20 A	20-Jun-22		Tunnel -	FS main,	Socket & AFA e	quipment				
0			8	07-Jul-22	15-Jul-22					Tunnel	- Install 150mm dia. FS	pipe		
0			507	19-Oct-20 A	06-Jul-22				L	nderpass L1 paving, funi	iture, marking, signage	from East Portal		
0			494	19-Oct-20 A	20-Jun-22		Tunnel -	E&M 2nd	Fix (Lighting &	Equipment)				
0			477	09-Nov-20 A	20-Jun-22		underpa	iss ABWF	vorks					
0			477	09-Nov-20 A	20-Jun-22		Tunnel -	E&M Final	Fix (Equipmen	t connection & testing)				
0			24	16-Jul-22	12-Aug-22	_						Tunnel - T&	C & Statutory inspection	
0			12	03-May-22 A	16-May-22 A	 								
0			24	16-Jul-22	12-Aug-22	-						Tunnel - bit	uminous paving	
,														
0			120	01-Apr-22 A	26-Aug-22								RWA10	construct U channel & footp
0			388	02-Mar-21 A	22-Jun-22		L4 (I	Drainage)	Backfill for wat	er main CH0 to CH200				
0			388	02-Mar-21 A	22-Jun-22		L4 (I	Drainage)	Excavate & lay	drain CH250 to CH300				
0			388	02-Mar-21 A	22-Jun-22		L4 (I	Drainage)	Excavate & lay	drain CH350 to CH400				
0			165	29-Nov-21 A	22-Jun-22		L4 (I	Drainage)	Backfill for wat	er main CH200 to CH400	D			
0			151	15-Dec-21 A	22-Jun-22		L4 (Watermain	& UU) - Constu	uct watermain & UU CH0	to CH200			
0			151	15-Dec-21 A	22-Jun-22		L4 (Watermain	& UU) - Constu	uct watermain & UU CH20	00 to CH400			
0			98	19-Feb-22 A	20-Jun-22		L4 (road) - Kerb lay	ing					
0			85	15-Mar-22 A	28-Jun-22			 L4	(road) - Paving	, cycle track, marking, sig	nage, lighting			
0			738	19-Dec-19 A	18-Jun-22		Road L1 eas	st 2 - ductin	g for Street Lig	hting				
0			645	17-Apr-20 A	18-Jun-22		Road L1 eas	st 2 - Road	Pavement					
0			635	13-Jun-20 A	02-Aug-22							Road L1 east 2 - Landscape fur	iture	
0			635	13-Jun-20 A	02-Aug-22							Road L1 east 2 - Landscape fur	iture	
0			14	16-Jun-22	02-Jul-22				Cable lay	ing (by CLP)				
0			25	04-Jul-22	01-Aug-22	_						T&C & Statutory inspection		
			20	0 T Odi 22	or ridg EE									
0			102	03-May-22 A	31-Aug-22									Carriageway works (L1 junc
0			50	03-Aug-22	30-Sep-22	-								
0			50	03-Aug-22	30-Sep-22	-								
0			52	01-Sep-22	03-Nov-22	-								
0			77	15-Apr-22 A	20-Jul-22						Lay power cable (L1	West Corner) (by CLP)		
0			77	15-Apr-22 A	20-Jul-22] Lay gasmain (L1 We	st Corner) (by Towngas)		
0			50	21-Jul-22	17-Sep-22	-								
0			50	19-Aug-22	19-Oct-22	-								
0			333	21-Jun-21 A	02-Aug-22							Road L1 west 1 - Landscape fur	hiture	
0			144	11-Apr-22 A	02-Aug-22 05-Oct-22									
0			144		31-Aug-22									Carriageway works (Road L:
0			IUZ	03-May-22 A	51-Aug-22									
				2 m = = +		ing Drogramme			ate		Revisio	n	Checked	Approved
		من ما مر مر				ing Programme	-	15-Jun	-22	C1-MPU202206	;			
		Anderso 15-Jun-2	n Rd Sub-p	rogramme										
		10-00H-2												

		CONT	FRACT NO.NE	/2016/01 S	A	NDERS	N AND INFRASTRUCTURE ON ROAD QUARRY SITE ROLLING PROGRAMME	E WORKS FOF	DEVELOPMENT OF	Page 3	3 of 3
vity ID	Activity Name	BL Project B Duration	L Project BL Project Start Finish	At Completion Duration	Start	Finish	2,2022	un	Jul	Qtr 3, 2022 Aug	Sep
RL3-2030	Footpath & cycle track (Road L3)	0		66	16-Aug-22	03-Nov-22	nay o				
RL4-2010	Carriageway works (Road L4)	0		50	03-Aug-22	30-Sep-22					
RL4-2030	Footpath & cycle track (Road L4)	0		52	01-Sep-22	03-Nov-22					
Hiking Trail Conr	necting to Wison Trail (Portion B5)										
Construction wo	orks at Hiking Trail										
HIK10130	(NOC215) Delay due to Design review on Hiking Trail	0		306	06-Jul-21 A	15-Jul-22			(NOC215) Delay due to Desig	review on Hiking Trail	
HIK10150	Resume work - Construction of Dwarf Walls for Hiking Trail (SP001 to SP001A)	0		78	16-Jul-22	18-Oct-22					
HIK10250	Slope works at Portion B5	0		420	14-Jun-21 A	09-Nov-22					
						1		1 '		•	

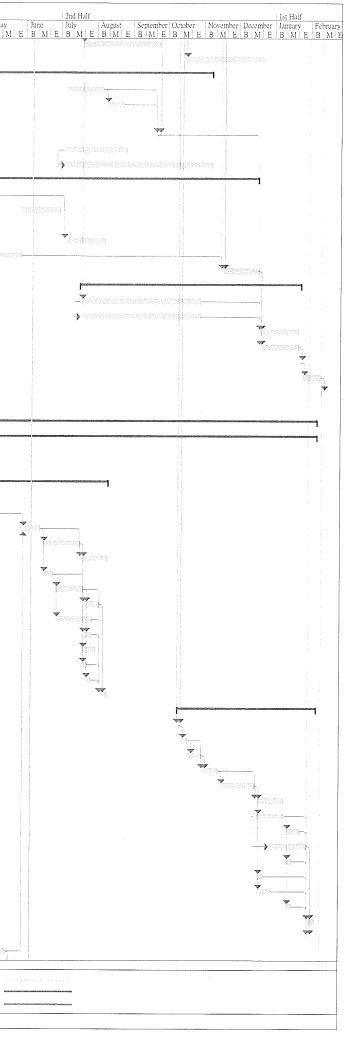
Planned Bar (WP) 🔶 🔶 Plan	anned Milestone (WP)	2 month Balling Drogramma	Date	Rev
Actual Bar	lestone	3-month Rolling Programme Anderson Rd Sub-programme	15-Jun-22	C1-MPU202206
Forecast Bar		15-Jun-22	<u> </u>	


Revision	Checked	Approved


Contract 2 (NE/2016/05)

k Name	Duration	Start	Finish	Predecessors	Successors	lf Ist Half August September October November December January February March
						$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
/2016/05		Tue 3/8/21	Fri 10/2/23			
Portion 1	284 days	Tue 3/8/21	Wed 20/7/22			
Portion 2	443 days	Tue 24/8/21	Fri 10/2/23			
E3-PC2 Pile Cap, Column and Pier	175 days	Wed 1/9/21	Sat 2/4/22			
Concrete Capping Works	6 days	Wed 8/9/21	Tue 14/9/21		137	. <i>H</i>
Temporary Working Platform for Piling	12 days	Wed 1/9/21	Tue 14/9/21		137	· · · · · · · · · · · · · · · · · · ·
Risk Assessment for Existing RC Canopy at Fu Wah Court	12 days	Fri 24/9/21	Fri 8/10/21		137,174	
Piling Works	40 days	Sat 9/10/21	Thu 25/11/21	135,134,136	138,153,154	
Anchor Plate for Pile Heads incl. Testing	6 days	Fri 26/11/21	Thu 2/12/21	137	139	
Construction of Blinding Layer	2 days	Fri 3/12/21	Sat 4/12/21	138	140	₩ •
Construction of Pile Cap	10 days	Mon 6/12/21	Thu 16/12/21	139	141	
Construction of Column	12 days	Tue 18/1/22	Mon 31/1/22	140	142	
Construction of Pier Head and Corbal	22 days	Fri 4/2/22	Tue 1/3/22	141	143,144	
Concrete Curing for Pier Head	28 days	Wed 2/3/22	Sat 2/4/22	142	153	
Bearing Installation at Corbal	3 days	Wed 2/3/22	Fri 4/3/22	142	153	
E3-FB1 Bridge	380 days	Tue 24/8/21	Tue 29/11/22	172	100	
Design Submission of Temporary Support at E3-Abt	1 day	Tue 24/8/21	Tue 24/8/21		153,147,154	-
Design Submission of Temporary Support at E3-Abt	28 days		Tue 28/12/21	146	150	
Shop Drawing Submission of E3-FB1	20 uays 1 day	Fri 27/8/21	Fri 27/8/21	219	153,149,154	
Shop Drawing Approval of E3-FB1 Shop Drawing Approval of E3-FB1	1 uay 28 days	Wed 29/12/21		148	155,149,154	
Procurement of Material for Temp. Support	28 days 12 days	Wed 29/12/21 Wed 29/12/21		148	153,154	
Procurement / fabribation for E3-FB1 (1st - 3rd Session)	50 days	Fri 4/2/22	Sat 2/4/22	149	155,156,157	
Procurement / fabribation for E3-FB1 (4th Session)	40 days	Tue 7/6/22	Sat 2/4/22 Sat 23/7/22	149	161	
Erect Temp. Support at E3-Abt (For 1st Session, E3-FB1)	6 days	Mon 4/4/22	Mon 11/4/22	146,148,150,137,143,144		
Bearing Installation at E3-Abt	3 days	Tue 15/3/22	Thu 17/3/22	146,148,150,137	155	v
Lifting & Install E3-FB1 - 1st Session (from E3-Abt)	6 days	Sat 7/5/22	Sat 14/5/22	151,153,154	156,157,176	
Lifting & Install E3-FB1 - 2nd Session (from E3-P1)	6 days	Mon 16/5/22	Sat 21/5/22	155,151	234,157	
Lifting & Install E3-FB1 - 3rd Session (Connect 1st & 2nd Session)	6 days	Mon 23/5/22	Sat 21/5/22 Sat 28/5/22	155,156,151	161	
Fabribation & Delivery of Temp Steel Platform in Mainland	6 days	Sat 30/4/22	Sat 20/3/22 Sat 7/5/22	100,100,101	159	
Fabribation & Delivery of Temp Steel Platform in Mainand	12 days	Tue 10/5/22	Mon 23/5/22	158	160	
Install Temporary Steel Platform for E3-LT1 to E3-P1	12 days 21 days	Tue 7/6/22	Thu 30/6/22	159	161	
Lifting & Install E3-FB1 - 4th Session (E3-LT1 to E3-P1)		Mon 25/7/22	Sat 6/8/22	159	235,162	
	12 days	Mon 8/8/22		161	163,172	
Erection of Scaffolding	6 days		Sat 13/8/22	162	163,172	
Concreting Bridge Deck	10 days	Mon 15/8/22	Thu 25/8/22	163		
Construction of RC Planters	21 days	Fri 26/8/22	Mon 19/9/22		170,165	
Installation of Corrugated Roof Panel & Gutter	21 days	Tue 20/9/22	Thu 13/10/22		169,171,172,167,166SS+10 day	
Floor Tiling	21 days	Sat 1/10/22		165SS+10 days	168SS+11 days	
Installation of GRP Feature	12 days	Fri 14/10/22	, ,	165	172	
Installation of E&M Works incl. Lighting, Power Cable (From E3 Pillar	,	Fri 14/10/22	Tue 15/11/22	166SS+11 days	172	
Installation of Downpipe	6 days	Fri 14/10/22	Thu 20/10/22	165	172	
Installation of Irrigation System	12 days	Tue 20/9/22	Mon 3/10/22	164	172	
Fall Arrest System	6 days	Fri 14/10/22		165		
Dismantling of Scaffolding & Temporary Support to E3-FB1	12 days	Wed 16/11/22		165,167,168,169,170,162		
Covered Walkway, Sump Pit, E2 Pillar Box	359 days	Sat 9/10/21	Mon 19/12/22		170	
Excavation of Sump Pit	69 days	Sat 9/10/21	Fri 31/12/21	136	175	a david severa serie da da serie da da serie da da serie da da serie da serie da serie da serie da serie da se
Construction of Sump Pit	28 days	Mon 3/1/22	Mon 7/2/22	174	184	
Construction of Footing of Covered Walkway	40 days	Sat 11/6/22	Thu 28/7/22	155	177	
Backfilling and Compaction Test	6 days	Fri 29/7/22	Thu 4/8/22	176	192,206,180	
Installation of Steel Frame (Covered Walkway)	28 days	Tue 13/9/22	Fri 14/10/22	193	179	
Installation of Roofing (Covered Walkway)	28 days	Sat 15/10/22	Wed 16/11/22		183,185,186,184	
Construction of E2 Pillar Box (Civil)	28 days	Fri 5/8/22	Tue 6/9/22	177	181,182	
Construction of E2 Pillar Box (E&M)	12 days	Wed 7/9/22	Tue 20/9/22	180	182,257	
E2 Pillar Energized from E3 Pillar	1 day	Thu 22/9/22	Thu 22/9/22	257,180,181	202	
Construction of Pavement	28 days	Thu 17/11/22	Mon 19/12/22			
Installation of E&M Works (Pump & Lighting)	21 days	Thu 17/11/22	Sat 10/12/22			
Installation of Irrigation Pipe	6 days	Thu 17/11/22	Wed 23/11/22	179		
Fall Arrest System	6 days	Thu 17/11/22	Wed 23/11/22	179		
E2 Lift Tower	335 days	Tue 14/9/21	Fri 28/10/22			
Scaffolding Modification	6 days	Tue 14/9/21	Mon 20/9/21		189,190,191	
Window and Louvre Installation	28 days	Tue 21/9/21	Tue 26/10/21	188	199	

Page 1



D Tas	k Name	Duration	Start	Finish	Predecessors	Successor	
		Duration	orar	4 11151	r reaccessors	Successors	lf August September October November December January February March April
190	Tiling Works on Wall	28 days	Fri 15/10/21	Tue 16/11/21	100		
191	Waterproofing Works	5 days	Fri 15/10/21	Wed 20/10/21			
192	Erect Falseworks for E2-LT1 RC Decking at +66.3mPD	12 days	Fri 5/8/22	Thu 18/8/22	177	193,208	
193	Construction of E2-LT1 RC Decking at +66.3mPD	21 days	Fri 19/8/22	Mon 12/9/22		196,178,194	
194	Erect Falseworks for E2-LT1 Staircase Landing at +62.85mPD	, 12 days	Tue 13/9/22	Mon 26/9/22		195	
195	Construction of E2-LT1 Staircase Landing at +62.85mPD	12 days	Tue 27/9/22	Mon 10/10/22			
96	Installation of Steel Frame (E2-LT1 Canopy)	12 days	Tue 13/9/22	Mon 26/9/22		197,198	
97	Installation of Railing	12 days	Tue 27/9/22	Mon 10/10/22		203	
98	Tiling Works	28 days	Tue 27/9/22	Fri 28/10/22	196		
99	E&M Works	28 days	Wed 27/10/21		189	200,201	· •
00	Cabling for Permanent Power	12 days	Mon 29/11/21		199	203	
)1	Lift Installation	85 days	Fri 28/1/22	Tue 17/5/22	199	203,202	
02	Lift T&C	12 days	Fri 23/9/22	Thu 6/10/22	201,257,182	203	
)3	LE5 Submission to EMSD	1 day	Tue 11/10/22		201,200,197,257,202	204	
)4	Use Permit for E2-LT1	14 days	Wed 12/10/22			310	
05	E2-PC2 Pile Cap	57 days	Fri 5/8/22	Mon 10/10/22			
6	Excavation for Column Construction	3 days	Fri 5/8/22	Mon 8/8/22	177	207	
07	Construction of Column	12 days	Tue 9/8/22	Mon 22/8/22	206	208	
)8	Construction of Pier Head and Corbal	28 days	Tue 23/8/22	Fri 23/9/22	207,192	211,209,210	
19	Concrete Curing for Pier Head and Corbal	14 days	Sat 24/9/22	Mon 10/10/22		296	
0	Bearing Installation	3 days	Sat 24/9/22	Tue 27/9/22	208	296	
1	Drainage	28 days	Sat 24/9/22	Wed 26/10/22		212	
2	Reinstatment	12 days	Thu 27/10/22	Wed 9/11/22		212	
3	E3-LT1 Lift TowerPortion 2	437 days		Fri 10/2/23	211		
.4	E3-LT1 Lift tower structure	57 days	Tue 31/8/21	Mon 8/11/21			
5	15th pour (+59.7 - +63.3mPD)	25 days	Tue 31/8/21	Wed 29/9/21		216	
6	16th pour (+63.3 - +66.5mPD)	12 days	Thu 30/9/21	Fri 15/10/21	215	216 217	
1	17th pour (+66.5 - +70.45mPD)	12 days 10 days	Sat 16/10/21				erio de la companya de la
8	18th pour (+70.45 - +71.35mPD & Partial Parapet wall)	10 days	Thu 28/10/21	Wed 27/10/21		218	- Viscat - Viscat
9	E3-ST1 Staircase (landing & stairs)			Mon 8/11/21	217	220,261	
0	1st pour (+25.0 - +28.6mPD)	212 days		Tue 15/11/22	21.0	224	V
1	2nd pour (+28.6 - +32.2mPD)	7 days	Fri 4/3/22	Fri 11/3/22	218	221	
2	3rd pour (+32.2 - +35.8mPD)	10 days	Thu 14/4/22	Thu 28/4/22	220	222	
3	4th pour (+35.8 - +38.8mPD)	14 days	Fri 29/4/22	Tue 17/5/22	221	223	
4	5th pour (+38.8 - +41.8mPD)	14 days	Wed 18/5/22	Thu 2/6/22	222	224	
5		14 days	Sat 4/6/22	Mon 20/6/22	223	225	
6	6th pour (+41.8 - +45.4mPD)	14 days	Tue 21/6/22	Thu 7/7/22	224	226	
7	7th pour (+45.4 - +49.0mPD)	14 days	Fri 8/7/22	Sat 23/7/22	225	227	
8	8th pour (+49.0 - +52.6mPD)	14 days	Mon 25/7/22	Tue 9/8/22	226	228	
, ,	9th pour (+52.6 - +56.2mPD)	14 days	Wed 10/8/22	Thu 25/8/22	227	229	
0	10th pour (+56.2 - +59.7mPD)	14 days	Fri 26/8/22	Sat 10/9/22	228	230	
	11th pour (+59.7 - +63.3mPD)	14 days	Mon 12/9/22	Tue 27/9/22	229	231	
2	12th pour (+63.3mPD)	14 days	Wed 28/9/22	Thu 13/10/22	230	232,252	
	13th pour (+66.5mPD)	14 days	Fri 14/10/22	Sat 29/10/22	231	233	
1	14th pour (+70.45mPD)	14 days	Mon 31/10/22		232	266,239	
4	Erection of small crane at roof	15 days	Mon 23/5/22	Thu 9/6/22	156	235	
5	Removal of tower crane & footing	7 days	Mon 8/8/22	Mon 15/8/22	234,161	237	
5	Reinstatement works for tower crane slab	63 days	Tue 16/8/22	Thu 27/10/22			
7	Slab Opening Reinstatement	56 days	Tue 16/8/22	Wed 19/10/22	235	238,266	
3	Parapet Wall (Remaining)	7 days		Thu 27/10/22	237	246,247,239	
	Removal of small crane	14 days	Wed 16/11/22	Thu 1/12/22	238,233		
	Steel truss - welding works & welding test	31 days	Thu 23/9/21	Sun 31/10/21		241,242	
	Window installation	45 days	Tue 10/5/22	Sat 2/7/22	240	243	
	Louvre installation	45 days	Tue 10/5/22	Sat 2/7/22	240	243	
	Water tightness test for E3-LT1 louvre / windows	12 days	Mon 4/7/22	Sat 16/7/22	241,242	244SS,245SS,251,268	
	Tiles (Wall/Staircase/Floor)	90 days	Mon 4/7/22	Sat 15/10/22	243SS	249	
	Paint	90 days	Mon 4/7/22	Sat 15/10/22	24355	249	
	Fall Arrest System (Roof)	6 days		Thu 3/11/22	238		
	Waterproof (Roof)	6 days		Thu 3/11/22	238	248	
	Water tightness test for E3-LT1 roof	4 days	Fri 4/11/22	Tue 8/11/22	247	249	
	Dismantle of scaffolding working platform	30 days		Tue 13/12/22	248,244,245	250	
0	Glass canopy at G/F	15 days	Wed 14/12/22		249		
		•					
	Task	Provinces		e Milestone	Duration-only		Start-only E External Milestone 🔗 Critical Split
ect: NE	201605_Programme_20 Split Project Summ			2 Summary			Finish-only Deadline - Progress
	Milestone 🔷 Inactive Task		Manual	L Lack 新空行。	Manual Summa	And the second se	
					widhudi Sullillidi	y I I	External Tasks Manual Progress

Instructure 9 deg								lf Ist Half August September October November December January February March April May
Second	251	Install inclined plate at the recess of Windows & Louvres	59 davs	Mon 18/7/22	Fri 23/9/22	243		
No. No. <td>252</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>	252		-					
No. Strandscript Outlog Column (1975) Solution (1975)	253	E&M works	317 days	Mon 18/10/21				
Image: Note:		Excavation and Laying Cable by CLP (Next to HD Site)	30 days	Mon 4/7/22	Sat 6/8/22		255,257	
No. Line University State Cole 1 or e evel Junc 2 Bit Junc 2 <ths< td=""><td>1</td><td>Excavation by KO and Laying Cable by CLP (Outside E3-LT1)</td><td>14 days</td><td>Mon 8/8/22</td><td>Tue 23/8/22</td><td>254</td><td>257</td><td></td></ths<>	1	Excavation by KO and Laying Cable by CLP (Outside E3-LT1)	14 days	Mon 8/8/22	Tue 23/8/22	254	257	
Image: Process Data Proce		E3 Pillar Box (Civil)	65 days	Mon 18/10/21	Tue 4/1/22		263	ana de la compara de la com
Dammer Verweite Print Print	1	E3 Pillar Energized by CLP	1 ɗay	Wed 21/9/22	Wed 21/9/22	181,254,255	270,203,202,182,271	
Model Exact Answer (1997) Model Model <td></td> <td>Telemetry Duct</td> <td>47 days</td> <td>Mon 4/7/22</td> <td>Fri 26/8/22</td> <td></td> <td>25955</td> <td></td>		Telemetry Duct	47 days	Mon 4/7/22	Fri 26/8/22		25955	
Nome Nome Number of		Drainage Manhole	109 days	Mon 4/7/22	Mon 7/11/22	258SS		
Bit Strate F (LAV) Solution Description Description Description Bit Strate (LAV) Fund (MAN) Solution Machine Constrained (LAV) Solution		Electrical installation	333 days	Tue 9/11/21	Sat 17/12/22			
Bits Piller for yRAM Bits Bits The for yRAM Bits Bits The for yRAM Bits The for yRAM The for YRAM <ththe for="" th="" yram<=""> <th< td=""><td></td><td>Lift Shafts</td><td>90 days</td><td>Tue 9/11/21</td><td>Mon 28/2/22</td><td>218</td><td>264</td><td></td></th<></ththe>		Lift Shafts	90 days	Tue 9/11/21	Mon 28/2/22	218	264	
Set Lighting Bit Set of Se		Sump Pit (E&M)	30 days	Thu 26/5/22	Thu 30/6/22			
Bits Matchinemen (Assert Private) Passert Private Passert Private Passert Private Bits Multicher one (Mote DF-17 Suites & Turner Content Bits Passert Private		Pillar Box (E&M)	82 days	Wed 5/1/22	Thu 14/4/22	256		
Manufactor Manufac		Lighting	31 days	Mon 4/7/22	Mon 8/8/22	261		
No. University No. No. No. UD UD Set Part Set Part Set Part Set Part M Doorf rands / Mach Sod Part Set Part Set Part M Doorf rands / Mach Sod Part Set Part Set Part M Table Doorf rands / Mach Sod Part Set Part Set Part M Table Doorf rands / Mach Sod Part Set Part Set Part M Table Doorf rands / Mach Sod Part Set Part Set Part M Mach Sod Part Part Set Part Set Part Set Part Set Part M Part Set Part		Machine room (Above Lift Shaft)	28 days	Mon 25/4/22	Sat 28/5/22		266	
Mit Mit <td>66</td> <td>Machine room (Above E3-ST1 Staircase & Tower Crane)</td> <td>28 days</td> <td>Wed 16/11/22</td> <td>Sat 17/12/22</td> <td>237,265,233</td> <td>271,270</td> <td></td>	66	Machine room (Above E3-ST1 Staircase & Tower Crane)	28 days	Wed 16/11/22	Sat 17/12/22	237,265,233	271,270	
Main Dest-frame(A) Mile: Sol Large Set (2/11/2) Sol S2 (2/11/2)	67	Lift installation	163 days	Mon 18/7/22	Mon 23/1/23			
Bit fort Solution Solution Solution Solution Solution Bit Solution Solution <t< td=""><td>68</td><td>Lift Car Installation</td><td>90 days</td><td>Mon 18/7/22</td><td>Sat 29/10/22</td><td>243</td><td>269SS,270,271</td><td></td></t<>	68	Lift Car Installation	90 days	Mon 18/7/22	Sat 29/10/22	243	269SS,270,271	
M Set Fast M Mon 19/1/27 Start 1/1/27 Start 1/1/		Door frames / Misc.	90 days	Mon 18/7/22	Sat 29/10/22	268SS	270,271	
N Solution Solut	70	Self test	30 days		Sat 21/1/23			
21 Submit LET to FMDD Ldw Mode 20/1/23 Vol 20/1/23 <td< td=""><td>71</td><td>T&C</td><td>,</td><td></td><td></td><td></td><td>272</td><td></td></td<>	71	T&C	,				272	
Note: Pre-handing over insection (63.11) 6.26-88.10 to public 1.6.99 Tr. 24/1/3 Th. 10/1/23 27.2 27.4 Pre-handing over insection (63.11) 6.26-88.10 to public 1.6.99 Fin 10/27.23 27.3 27.3 Pre-handing over insection (63.11) 6.26-88.10 to public 1.6.99 Mos 20/7.21 Mos 20/7.21 Mos 20/7.21 Non-Exclusion (6.10) Fight: 4.6.99 Mos 20/7.21 Mos 20/7.21 The 33.00 Protume of Approval of EFR1: 4.5.99 Mos 20/7.21 The 33.07.22 27.9 22.0 Breadming betwerts hetworks hetwork	- E	Submit LE5 to EMSD				,		
Aug A		Pre-handing over inspection (E3-LT1 & E3-FB1) by HyD/Structure	-					
Mon Particinal Alf-days Mon 20//21 Mon 20//21 Mon 20//21 Mon 20//21 VEX Step Drivent Approval 012-HD1 7 year Mon 20//21 102 3/21 279 Mon Step Drivent 012-HD1 7 year Mon 20//21 102 3/21 279 Mon Extent 1.1 year 15 year 103 year 103 year 100 year Mon Extent 1.1 year 15 year 104 year 104 year 104 year Mon Extent 1.1 year 104 year 104 year 104 year 104 year Mon Extent 1.1 year 104 year 104 year 104 year 104 year Mon Conversion Service Response Not Note Casting 5 days Mon 20//21 Step 1/22 211 year 223 year Mon Conversion Service Response Not Note Casting 5 days Tot 11/22 Step 1/22 year 223 year 224 year Mon Tot 11/22 Xear Tot 11/22 year Xear 2/22 year 223 year 224 year Horr Installation of Conrupstal Rof Patel & Gutter		Ready to open Lift Tc [.] /er E3-LT1 / Footbridge E3-FB1 to public						
No. 20/01 Shap Dromit A prove of ER 14 Y down 30/02 Non 30/02 Y down 30/02 Y down 30/02 Proceeding A prove of ER 14 Y down 30/02 Tu X 20/02 Y 279 251 Y down 30/02 Proceeding A prove of ER 14 Y down 30/02 Tu X 20/02 Y Tu X 20/02 Y = Y = Y = Y = Y = Y = Y = Y = Y = Y =								
38 Sing Drawing Aproval of 53/F1 7 days Mon 20/2/2 1 us 29/2 273 211 37 Procurement of Material for 23-F81 45 days Mon 4/10/21 Thu 29/11/22 271 211 1 </td <td></td> <td>Portion 3</td> <td>416 days</td> <td>Mon 20/9/21</td> <td>Mon 6/2/23</td> <td></td> <td></td> <td></td>		Portion 3	416 days	Mon 20/9/21	Mon 6/2/23			
Production of Matchell for US F33 45 days Mon 4/10/21 Thu 25/11/12 278 281 25 25 F40 - 145 Source 16 2 F23 163 Gays Fr121/122 Thu 15/9272 252 55 26 Remaining Steenworks before Bridge Dock Cacing 6 Gays Fr121/122 Str 25/1272 281 281 281 26 Concenting Bridge Dock Cacing 6 Gays Mon 24/1272 Str 25/1272 281 281 281 26 Concenting Bridge Dock Cacing 6 Gays Mon 24/1272 Str 25/1272 281 281 281 27 Hoor Ching 21 days Tot 15/1272 Thu 16/1272 283 281 7 28 Frection of Staffolding 10 days Weid 15/672 Mon 18/1272 284 294		E2-FB1 Bridge	416 days	Mon 20/9/21	Mon 6/2/23			
Procurement of Material for E3-R3 45 days Mon 4/0/2/2 Intu 3/1/1/2 78 28.1 Bridge Exection (obv allow on Sit os Son / Public Holladisy) 2 days Fri 2/1/2/2 Sun 23/1/22 27 28.2 Image: Statistic Son / Public Holladisy Image: Statistic Son / Public	78	Shop Drawing Approval of E3-FB1	7 days	Mon 20/9/21	Tue 28/9/21		279	
B2 PB2-FB1-1x15gn (Housing Lift Your to E2-P2) P12 J1/J2 Tm1 J1/J22 Tm1 J1/J22<	79	Procurement of Material for E3-FB1	45 days	Mon 4/10/21		278	281	
Bridge feretion (DNA allow on Satt Sun / Public Hollay 2 day Phi 1/1/22 Sun 2/1/22 2 mage Sun 2/1/22 2 mage Bridge feretion (DNA allow on Satt Sun / Public Hollay 1 day 1 day 1 day 2 d	80	E2-FB1 - 1st Span (Housing Lift Tower to E2-P2)	163 days	Fri 21/1/22	Thu 11/8/22			
No. Remaining Stetworks before Bridge Dack Casting 6 day Mon 24/1/22 Str 29/1/22 281 283 Construction of Scr 201 St Construction of Scr Planter 12 days Twe 31/7/2 Twe 14/6/22 282,311 284,268,285 St Floor Tiling 21 days Twe 31/7/2 Twe 13/7/22	81	Bridge Erection (Only allow on Sat to Sun / Public Holiday)	2 days	Fri 21/1/22		279	282	e e e e e e e e e e e e e e e e e e e
Bit Construction of SC Planter Bit Work Bit S/F 2 Mon 18/7/2 Bit Work Bit S/F 2 Mon 18/7/2 Bit Work Bit S/F 2 Bit Find 10 day Yue JS/F 2 S32 S33 S27 Bit Find 10 day Yue JS/F 2 S32 St 25/6 / 2 S33 S33 ST Installation of Corrugated Boof Panel & Gutter 11 day Yue JS/F 2 S32 St 25/6 / 2 S33 S333 S333 S333	82	Remaining Steelworks before Bridge Deck Casting	6 days			281		*
NoConstruction of RC PlanterRelayWei My/22Main My/22RelaySu 25,28,28Ploor TringFrection of Scaffolding10 dwWei 13/6/12Sat 25/6/12Sat 25/6/12Sat 25/6/12Installation of Corrugated Roof Panel & Gutter12 dwWei 13/6/12Thu 11/8/12Sat 25/6/12Sat 25/6/12Sat 25/6/12Installation of Corrugated Roof Panel & Gutter12 dwKri 27/72Thu 13/72Sat 25/6/12Sat 25/6/12Sat 25/6/12Installation of Scaffolding12 dwKri 27/72Thu 28/72Sat 25/6/12Sat 25/6/12Sat 25/6/12Installation of Rampe12 dwKri 27/72Thu 28/72Sat 25/6/12Sat 25/6/12Sat 25/6/12Installation of Rampe12 dwKri 12/7/22Non 18/72Sat 25/6/12Sat 25/6/12Installation of Imgation System12 dwKri 12/7/22Non 18/72Sat 25/6/12Sat 25/6/12Installation of Sat Folding12 dwTru 13/72Non 18/72Sat 25/6/12Sat 25/6/12Installation of Sat Folding12 dwTru 13/72Non 18/72Sat 25/6/12Sat 25/6/12Installation of Sat Folding12 dwTru 13/72Non 18/72Sat 25/6/12Sat 25/6/12Installation of Sat Folding12 dwTru 13/72Val 13/72Sat 25/6/12Sat 25/6/12Installation of Sat Folding12 dwTru 13/72Non 13/72Sat 25/6/12Sat 25/6/12Installation of Sat Folding12 dwTru 13/72Non 13/72Sat 25/6/12Sat 25/6/12	83	Concreting Bridge Deck	12 days	Tue 31/5/22	Tue 14/6/22	282,311	284,286,285	
SimpleFloor ThingFloor Thing <td></td> <td>Construction of RC Planter</td> <td></td> <td>Wed 15/6/22</td> <td>Mon 18/7/22</td> <td></td> <td></td> <td></td>		Construction of RC Planter		Wed 15/6/22	Mon 18/7/22			
81 Installation of Corrugated Roof Panel & Gutter 21 doi: 10 20 doi:	85	Floor Tiling	21 days	Tue 19/7/22	Thu 11/8/22	283,284		
ST Installation of Corrugated Roof Panel & Gutter21 day 21 Mon 27/67271 U/72228 C 29 29 29 2929 29Installation of GRP Feature12 day 		Erection of Scaffolding	10 days	Wed 15/6/22	Sat 25/6/22	283	287,288,289,290	
Bit <br< td=""><td>87</td><td>Installation of Corrugated Roof Panel & Gutter</td><td>21 days</td><td>Mon 27/6/22</td><td>Thu 21/7/22</td><td>286</td><td></td><td></td></br<>	87	Installation of Corrugated Roof Panel & Gutter	21 days	Mon 27/6/22	Thu 21/7/22	286		
No. Installation of Downgipe Godys Fri 2//72 The 2//72 The 2//72 Sea No. Installation of Railing 12 days Tue 19/7/22 Mon 1//2/22 284 No. Installation of Irrigation System 6 days Tue 19/7/22 Mon 2/7/22 284 294 No. Installation of Irrigation System 6 days Tue 19/7/22 Mon 2/7/22 284 294 No. Sea Sea Sea 294 294 Dismantling of Scaffolding 6 days Fri 5/8/22 Thu 11/8/22 288,289,290,292,287,287 Y Sea Bafget Infing (Only allow on Satto Sun / Public Holiday) 2 days Tue 11/10/22 Wed 19/10/22 299,210 297 Remaining Steelworks before Bridge Deck Casting 6 days Tue 11/10/22 Wed 19/10/22 297 299.208 Installation of Correcting Bridge Deck 12 days Tue 11/10/22 Wed 11/1/22 297 299.208 Installation of Crugated Roof Panel & Gutter 12 days Tue 10/1/23 293,200 206,307,301,302 <t< td=""><td>88</td><td>Installation of GRP Feature</td><td>12 days</td><td></td><td></td><td></td><td></td><td></td></t<>	88	Installation of GRP Feature	12 days					
ModelInstallation of DownpipeG daysFi 22/7/2Fitu 28/7/22S28/2S28/2Installation of Trigton SystemG daysItu 19/7/2Mo1 //22S24S24SetSetSetSetSetSetSetFall Arrest SystemG daysFi 22/7/22Thu 28/7/22S28/22/22/23/23/23Set <td< td=""><td>89</td><td>Installation of E&M Works incl. Unistruct & Lighting</td><td>28 days</td><td>Mon 27/6/22</td><td>Fri 29/7/22</td><td>286</td><td>294</td><td></td></td<>	89	Installation of E&M Works incl. Unistruct & Lighting	28 days	Mon 27/6/22	Fri 29/7/22	286	294	
M Installation of Ariling 12 days Tue 19/7/22 Mon 1/8/22 24 Installation of Irrigation System 6 days Fue 19/7/22 Mon 25/7/22 24 24 Installation of Irrigation System 6 days Fu 27/7/22 Mun 27/7/22 Stap 24 Installation of Saffolding 6 days Fu 27/7/22 Thu 1/8/22 28 24 Installation of Saffolding 6 days Fu 27/7/22 Thu 1/8/22 28 24 Installation of Saffolding 6 days Fu 27/7/22 Thu 1/8/22 28 29 Installation of Saffolding 10 days Tue 11/10/22 Wed 19/10/22 29,210 29 Installation of Saffolding 10 days Thu 20/102 Wed 19/10/22 29 29,298 Installation of Saffolding 10 days Tue 11/10/22 Wed 19/11/22 29 30,301 Installation of GR Planter 2 days Tue 11/122 Inte 11/122 29 30,303,303,303,303,303,303,304,305,303,309,30455,510 days Installation of GR Planter 1 days Sa 171/2/22 <t< td=""><td>90</td><td>Installation of Downpipe</td><td>6 days</td><td></td><td></td><td>287,286</td><td></td><td></td></t<>	90	Installation of Downpipe	6 days			287,286		
Bail Arrest System 6 days Fri 2/7/22 Thu 28/7/22 287 294 Dismantling of Scaffolding 6 days Fri 5/8/22 Thu 11/8/22 288,289,290,292,287,293	91	Installation of Railing	12 days					
AllFall Arrest System6 daysFi 22/722Thu 28/722SP94Dismantling of Scaffolding6 daysFi 58/72Thu 18/72SPSPSPBridge Lifting (Ohy allow on Sat to Sun / Public Holday)2 daysTu 11/02Wed 12/102SPSPSPBridge Lifting (Ohy allow on Sat to Sun / Public Holday)2 daysTu 11/02Wed 12/102SPSPSPConcreting Bridge DeckConcreting Bridge Deck1 daysTu 11/102Wed 12/102SPSPSPConcreting Bridge Deck1 daysTu 11/102Wed 12/102SPSOSOSOConcreting Bridge Deck1 daysTu 11/102Ved 12/102SPSOSOSOFibor Tiling2 daysTu 11/102Ved 12/102SPSOSOSOSOInstallation of Corrugated RoofPanel & Gutter1 daysSt 17/12/2Tu 20/1/23SOSOSOSOInstallation of GRP Feature1 daysSt 17/12/2Tu 20/1/23SOSOSOSOSOInstallation of Iring stom System2 daysSt 17/12/2Tu 20/1/23SOSOSOSOSOInstallation of Iring stom System6 daysSt 17/12/2Tu 20/1/23SO<	92	Installation of Irrigation System	6 days				294	
Att Dismantling of Scaffolding 6 days Fri 5/8/2 Thu 11/8/2 288,289,290,292,287,297 Bridge Lifting (Only allow on Sat to Sun / Public Holiday) 2 days Tue 11/0/22 Mon 6/2/3 Bridge Lifting (Only allow on Sat to Sun / Public Holiday) 2 days Tue 11/0/22 Wed 12/10/22 299,298 Bridge Lifting (Only allow on Sat to Sun / Public Holiday) 2 days Tuu 13/10/22 Wed 13/10/22 297 299,298 Bridge Lifting (Only allow on Sat to Sun / Public Holiday) 10 days Thu 11/1/22 Wed 13/10/22 297 299,298 Bridge Lifting (Only allow on Sat to Sun / Public Holiday) 10 days Tuu 2/10/22 Men 13/10/22 297,298 300,301 Bridge Deck 12 days Tuu 11/1/22 Ven 11/1/23 297,298 300,301 Dismatilition of Corrugated Roof Panel & Gutter 21 days Sat 17/1/2/2 Tuu 11/1/23 302 308,305,303,309,304SS+10 day Bridge Liftint of E& Peature 12 days Sat 17/1/2/2 Tue 11/1/23 302 309 Dismatilition of Downpipe Gays Wed 11/1/23 Tue 17/1/23 302 309	9 3	- · ·	•					
E2-F81 - 2nd Span (E2-P2 to E2-tT1)102 daysrue 11/10/2Mon 6/2/23Bridge Lifting (Only allow on Sat to Sun / Public Holiday)2 daysrue 11/10/2Wed 12/10/22209,210297Remaining Steelworks before Bridge Deck Casting6 daysThu 13/10/22Wed 19/10/22296299,298Partice In Staffolding10 daysThu 13/10/22Wed 19/10/22297299299Partice In Staffolding10 daysTue 10/1/22Ven 14/11/22297,298300,301Partice In Staffolding10 daysTue 15/11/22Tue 10/1/23299,300106,307,301,302Partice In Staffolding21 daysSat 17/12/22Tue 10/1/23299,300108,305,303,309,3045S+10 dayPartice In Staffolding O GAR Feature12 daysSat 17/12/22Tue 10/1/23302309,310Partice In Staffolding O GAR Feature12 daysSat 17/12/22No 30/1/23302S+10 days309,310Partice In Staffolding O Feature12 daysWed 11/1/23Tue 24/1/23302309,310Partice In Staffolding O System6 daysWed 11/1/23Tue 17/1/23302309,310Partice In Staffolding O Faring System6 daysSat 17/12/22Fi 30/12/22300309,310Partice In Staffolding O System6 daysSat 17/12/22Fi 30/12/22300309,310Partice In Staffolding O System6 daysSat 17/12/22Fi 30/12/22300309,310Partice In Staffolding O System6 daysSat 17/12/22Fi 30/12/22300 <td>94</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>	94		-					
Pride Bridge Lifting (Only allow on Sat to Sun / Public Holiday) 2 days Tue 11/10/2 Wed 12/10/2 209,210 297 Premaining Steelworks before Bridge Deck Casting 6 days Thu 13/10/2 Wed 19/10/2 296 299,298 Prection of Scaffolding 10 days Thu 20/10/22 Mon 31/10/2 297 299 O Concreting Bridge Deck 10 days Thu 20/10/22 Mon 14/11/22 297,298 300,301 O Construction of RC Planter 12 days Tue 1/1/22 Tue 10/1/23 299,300 Pioor Tiling 21 days Sat 17/12/2 Tue 10/1/23 299,300 308,303,303,303,303,303,303,303,303,303,		E2-FB1 - 2nd Span (E2-P2 to E2-LT1)	-			,		
277 Remaining Steelworks before Bridge Deck Casting 6 days Thu 13/10/22 Wed 19/10/22 296 299,298 288 Erection of Scaffolding 10 days Thu 20/10/22 Mon 31/10/22 297 299 299 Concreting Bridge Deck 12 days Tue 1/11/22 Mon 14/11/22 297,298 300,301 200 Construction of RC Planter 28 days Tue 15/11/22 Firl 16/12/22 299 306,307,301,302 201 Floor Tiling 21 days Sat 17/12/22 Tue 10/1/23 299,300	76	Bridge Lifting (Only allow on Sat to Sun / Public Holiday)				209,210	297	
988Erection of Scaffolding10 daysThu 20/10/22Mon 31/10/22297299999Concreting Bridge Deck12 daysTue 1/11/22Mon 14/11/22297,298300,301000Construction of RC Planter28 daysTue 15/11/22Fri 16/12/22299306,307,301,302011Floor Tiling21 daysSat 17/12/22Tue 10/1/23299,300Installation of Corrugated Roof Panel & Gutter21 daysSat 17/12/22Tue 10/1/23302308,305,303,309,304SS+10 day02Installation of GRP Feature12 daysSat 17/12/22Tue 10/1/2330230930903Installation of GRP Feature12 daysSat 17/12/22Tue 10/1/23302SS+10 days309,31004Installation of Downpipe6 daysThu 20/1/22Mon 30/1/23302SS+10 days309,31004Installation of Downpipe6 daysSat 17/12/22Fri 20/1/2330230905Installation of Irrigation System6 daysSat 17/12/22Fri 20/1/2330230905Installation of Railing12 daysSat 17/12/22Fri 20/1/2330030906Installation of Railing12 daysSat 17/12/22Fri 20/1/2330230907Installation of Railing6 daysSat 17/12/22Fri 20/1/2330230908Fall Arrest System6 daysWed 11/1/33Tue 17/1/3330230908Fall Arrest System6 daysWed 11/1/33Tue 17/1/3	97		-					
299 Concreting Bridge Deck 12 days Tue 1/1/22 Mon 1/1/1/2 297,298 300,301 200 Construction of RC Planter 28 days Tue 15/11/22 Fri 16/12/22 299 306,307,301,302 201 Floor Tiling 21 days Sat 17/12/22 Tue 10/1/23 299,300	98	5 5 5						
00 Construction of RC Planter 28 days Tue 15/11/22 Fri 16/12/22 29 306,307,301,302 01 Floor Tiling 21 days Sat 17/12/22 Tue 10/1/23 299,300 308,305,303,309,304SS+10 day 02 Installation of Corrugated Roof Panel & Gutter 21 days Sat 17/12/22 Tue 10/1/23 300 308,305,303,309,304SS+10 day 03 Installation of GRP Feature 12 days Sat 17/12/22 Tue 24/1/23 302 309 04 Installation of E&M Works incl. Unistruct & Lighting 28 days Thu 29/12/22 Mon 30/1/23 302SS+10 days 309,310 05 Installation of Downpipe 6 days Wed 11/1/23 Tue 17/1/23 302 309 06 Installation of Railing 12 days Sat 17/12/22 Fri 30/12/22 300 309 07 Installation of Railing 12 days Sat 17/12/22 Fri 30/12/22 300 309 08 Fall Arrest System 6 days Wed 11/1/23 Tue 17/1/23 302 309 08 Fall Arrest System 6 days Wed 11/1/23 Tue 17/1/23 302 309	99	0	-					
PlanFloor Tiling21 daysSat 17/12/22Tue 10/1/23299,300P2Installation of Corrugated Roof Panel & Gutter21 daysSat 17/12/22Tue 10/1/23300308,305,303,309,304SS+10 dayP3Installation of GRP Feature12 daysWed 11/1/23Tue 24/1/23302309P4Installation of E&M Works incl. Unistruct & Lighting28 daysThu 29/12/22Mon 30/1/23302SS+10 days309,310P4Installation of Downpipe6 daysWed 11/1/23Tue 17/1/23302309309P6Installation of Irrigation System6 daysSat 17/12/22Fri 23/12/22300309P6Installation of Railing12 daysSat 17/12/22Fri 30/12/22300309P7Installation of Railing12 daysSat 17/12/22Fri 30/12/22300309P8Fall Arrest System6 daysWed 11/1/23Tue 17/12/33302309P9Dismantling of Scaffolding6 daysTue 31/123Mon 6/2/23303,304,305,306,308,302P0Ready to open Lift Tower E2-LT1 & E2-FB11 dayTue 31/1/23Tue 31/123307,304,204	00							
12Installation of Corrugated Roof Panel & Gutter21 daysSat 17/12/22Tue 10/123300308,305,303,309,304SS+10 day13Installation of GRP Feature12 daysWed 11/123Tue 24/12330230914Installation of E&M Works incl. Unistruct & Lighting28 daysThu 29/12/22Mon 30/1/23302SS+10 days309,31015Installation of Downpipe6 daysWed 11/1/23Tue 17/1/2330230930916Installation of Irrigation System6 daysSat 17/12/22Fri 23/12/2230030917Installation of Railing12 daysSat 17/12/22Fri 30/12/2230031018Fall Arrest System6 daysWed 11/1/23Tue 17/1/2330230919Dismantling of Scaffolding6 daysTue 31/123Mon 6/2/23303,304,305,306,308,30210Ready to open Lift Tower E2-LT1 & E2-FB11 dayTue 31/123Tue 31/123307,304,204	01							
A3Installation of GRP Feature12 daysWed 11/123Tue 24/1/2330230944Installation of E&M Works incl. Unistruct & Lighting28 daysThu 29/12/22Mon 30/1/23302SS+10 days309,31055Installation of Downpipe6 daysWed 11/1/23Tue 17/12/330230930966Installation of Irrigation System6 daysSat 17/12/22Fri 23/12/2230030977Installation of Railing12 daysSat 17/12/22Fri 30/12/2230031078Fall Arrest System6 daysWed 11/1/23Tue 17/12/3330230979Dismantling of Scaffolding6 daysWed 11/1/23Tue 17/12/3330230979Ready to open Lift Tower E2-LT1 & E2-FB11 dayTue 31/123Tue 31/12/33307,304,204		÷	-				308 305 303 309 30455±10 4-1	
Add AddInstallation of E&M Works incl. Unistruct & Lighting28 daysThu 29/12/22Mon 30/1/23302SS+10 days309,31035Installation of Downpipe6 daysWed 11/1/23Tue 17/1/2330230936Installation of Irrigation System6 daysSat 17/12/22Fri 23/12/2230030937Installation of Railing12 daysSat 17/12/22Fri 30/12/2230031038Fall Arrest System6 daysWed 11/1/23Tue 17/1/2330230939Dismantling of Scaffolding6 daysTue 31/1/23Tue 17/1/2330230930Ready to open Lift Tower E2-LT1 & E2-FB11 dayTue 31/1/23Tue 31/1/23307,304,204		•	-					
Installation of Downpipe6 daysWed 11/1/23Tue 17/1/23302309Installation of Irrigation System6 daysSat 17/12/22Fri 23/12/22300309Installation of Railing12 daysSat 17/12/22Fri 30/12/22300310Installation of Scaffolding6 daysWed 11/1/23Tue 17/1/23302309Installation of Railing12 daysSat 17/12/22Fri 30/12/22300310Installation of Scaffolding6 daysWed 11/1/23Tue 17/1/23302309Installation of Scaffolding6 daysTue 31/1/23Mon 6/2/23303,304,305,306,308,302Image: Sat 17/12/22Ready to open Lift Tower E2-LT1 & E2-FB11 dayTue 31/1/23Tue 31/1/23307,304,204Image: Sat 17/12/22			-					
36Installation of Irrigation System6 daysSat 17/12/22Fri 23/12/2230030937Installation of Railing12 daysSat 17/12/22Fri 30/12/2230031038Fall Arrest System6 daysWed 11/1/23Tue 17/1/2330230939Dismantling of Scaffolding6 daysTue 31/1/23Mon 6/2/23303,304,305,306,308,3024Ready to open Lift Tower E2-LT1 & E2-FB11 dayTue 31/1/23Tue 31/1/23307,304,204		/	-			,		
17 Installation of Railing 12 days Sat 17/12/22 Fri 30/12/22 300 310 18 Fall Arrest System 6 days Wed 11/1/23 Tue 17/1/23 302 309 19 Dismantling of Scaffolding 6 days Tue 31/1/23 Mon 6/2/23 303,304,305,306,308,302 10 Ready to open Lift Tower E2-LT1 & E2-FB1 1 day Tue 31/1/23 Tue 31/1/23 307,304,204	1							
78 Fall Arrest System 6 days Wed 11/1/23 Tue 17/1/23 302 309 79 Dismantling of Scaffolding 6 days Tue 31/1/23 Mon 6/2/23 303,304,305,306,308,302 10 Ready to open Lift Tower E2-LT1 & E2-FB1 1 day Tue 31/1/23 Tue 31/1/23 307,304,204	1							
P Dismantling of Scaffolding 6 days Tue 31/1/23 Mon 6/2/23 303,304,305,306,308,302 0 Ready to open Lift Tower E2-LT1 & E2-FB1 1 day Tue 31/1/23 307,304,204	1	-						
0 Ready to open Lift Tower E2-LT1 & E2-FB1 1 day Tue 31/1/23 307,304,204			-				EUC	
	1							
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			-			307,504,204	217 202	
			ou uays	Tue 1/3/22	WION 10/5/22		312,283	

Page 3

ſ	D Ta	sk Name	Duration	Start	Finish	Predecessors	Successors	
								lf Ist Half
								August September October November December January February March April May E B M
	312	Road Surface Reinstatement	28 davs	Tue 17/5/22	Sat 18/6/22	311		
			- / -	, . ,				

	Task	Summary		Inactive Milestone		Duration-only		Start-only	E	External Milestone	\diamond	Critical Split
Project: NE201605_Programme_20	Split	 Project Summary]	Inactive Summary	1	Manual Summary Rollup	10000000000000000000000000000000000000	Finish-only	3	Deadline	-},	Progress
	Milestone	\$ Inactive Task		Manual Task	Notesta and the second second	Manual Summary		External Tasks		Critical		Manual Progress

	2nd Half						<u>Ist H</u> alf	
y June M E B M E	July B M E	August B M E	September B M E	October B M E	November B M E	December B M E	January B M B	February B M 1
(1997)								
a service a								

Contract 3 (NE/2017/03)

Z:\Jobs\2016\TCS00864 (CEDD)\600\EM&A Report Submission\Monthly EM&A Report\2022\July 2022\R0579v2.docx

	E 2A - Monthly Programme Update (202203)-0 _220726 orks Location 1 (RIW1)	<mark>917</mark> 312	09-Aug-21 A	23-Feb-23	Jul Aug 55 56 56	
Road Improvement Wo Construction Works CON11328C				23-FeD-23		
Construction Works	orks Location 1 (RIW1)	312				
CON11328C			18-Jan-22 A	08-Feb-23		
		312	18-Jan-22 A	08-Feb-23		
CON12372	Design reviewing at CT5	150	18-Jan-22 A	15-Aug-22		
	ELS works (KS27 east side)	60	20-May-22	30-Jul-22		
CON10390	Construct pile cap (RWC2 type 5 [bay 46])	90	14-Jun-22	28-Sep-22		
CON10272	Cut slope works (RWC2 Bay 48 to Bay 47)	30	25-Jun-22	30-Jul-22		
CON10274	Cut slope works (RWC2 type 4 Bay 45 to Bay 38)	60	25-Jun-22	03-Sep-22		3
CON11552	Install sheet pile for pile cap construction (FE1-PC1b, 32m, 1m/d)	14	13-Jul-22	28-Jul-22		
CON10652	Construct RW footing (RWC2 type 2)	60	14-Jul-22	22-Sep-22		
CON11554	ELS works for pile cap construction (FE1-PC1b, 32m, 1m/d)	36	29-Jul-22	08-Sep-22		
CON12410	Application for power supply & energization (KS27)	156	01-Aug-22	08-Feb-23		
CON12390	ELS works & construct subway footing (KS27 east side)	90	01-Aug-22	16-Nov-22		
CON10412	Construct RW footing (RWC2 type 6 [bay 48 to bay 47])	24	01-Aug-22	27-Aug-22		
CON10654	Construct RW wall (RWC2 type 2)	60	04-Aug-22	15-Oct-22		
CON11330	(NCE036B) Construct CT5 piling foundation (40nos, 3d/no, 1 team)	134	16-Aug-22	28-Jan-23		
CON10414	Construct RW wall (RWC2 type 6 [bay48 to bay47])	24	29-Aug-22	26-Sep-22		
CON10670	Slope reinstatement works (RWC2 type 1a, 1, 2)	60	03-Sep-22	15-Nov-22		
CON10432	Construct RW footing (RWC2 type 4 [bay 45 to bay 38])	42	05-Sep-22	26-Oct-22		
CON10452A	ELS to retaining wall footing (RWC2 type 3a Bay 37 to Bay 31)	72	05-Sep-22	30-Nov-22		
CON12330	Construct subway footing (KS27 west side, bay 1)	18	09-Sep-22	30-Sep-22		
CON11650	Construct NB RC pile cap (FE1-PC1b, 32m, 1m/d, 1 team)	24	09-Sep-22	10-Oct-22		
CON10752	Install sheet pile & ELS to RW pile cap (RWC2 type 3, stage 1)	72	16-Sep-22	10-Dec-22		
CON10330	upgrading works at Feature No. 11NEA/F60 (by pip-by-pit method) - Stage 2	78	27-Sep-22	30-Dec-22		
CON10430	Construct RW wall (RWC2 type 5 [bay 46])	90	29-Sep-22	17-Jan-23		
CON12350	Construct subway wall and soffit (KS27 west side, bay 1)	36	03-Oct-22	14-Nov-22		
CON11670	Construct NB RC wall (FE1-PC1b, 32m 0.75m/d, 1 team)	30	11-Oct-22	14-Nov-22		
CON10434	Construct RW wall (RWC2 type 4 [bay 45 to bay 38])	42 355	13-Oct-22 10-Jan-22 A	30-Nov-22 04-Feb-23		
•	orks Location 2 (RIW2)					
Construction Works in		274	10-Jan-22 A	15-Nov-22		
CON20790	Construct RW bay 9 to bay 13 base (L=30m) (due to unforeseen ground conc	66	10-Jan-22 A	15-Oct-22		
CON20170	Fabrication of NB steel post - along slope side	70	07-Sep-22	15-Nov-22		
Construction Noise Ser	emi-Enclosure SE2 (Portion C)	232	26-Apr-22	04-Feb-23		
CON219662	Excavate trial trench, SLG meeting & UU protection works (SE2 Bay13 to Bay	105	26-Apr-22	30-Aug-22		
CON21658	(CE332) Construct piling fdn of SE2 (Bay9 to Bay12, stage 2 38nos. 1 team)	30	23-Jun-22	28-Jul-22		
CON219702	ELS works to (Bay19 to Bay21)	60	19-Jul-22	27-Sep-22		
CON21774	Install pipe pile wall at CT4 road side (46nos, 2no/d 1 team + setup)	36	21-Jul-22	31-Aug-22		
CON21670	Install pipe pile wall at SE2 Bay4 to Bay8 (48m 68no. 1 team + setup)	30	29-Jul-22	01-Sep-22		
CON219703	Excavate trial trench, SLG meeting & UU protection works	120	13-Aug-22	06-Jan-23		
CON21968	Construct piling fdn SE2 Bay13 to Bay18 (74nos, 2d/no. 2 teams + setup + uu	84	31-Aug-22	09-Dec-22		
CON21776	ELS works at CT4 (12nos. strut, 0.25no/d, 1 team + setup)	48	01-Sep-22	29-Oct-22		
CON21690	Excavate & install lateral support (SE2 Bay4 to Bay12; L=110m)	125	02-Sep-22	04-Feb-23		
load Improvement Wo	orks Location 3 (RIW3)	727	09-Aug-21 A	04-Feb-23		
Construction Works		727	09-Aug-21 A	04-Feb-23		
CON31150	Construct RWD3 (CH60 to CH152)	150	09-Aug-21 A	09-Aug-22		
CON32410	Construct type 2 NB footing (SE1 bay13 to bay8)	150	16-Aug-21 A	18-Oct-22		
CON30410F	JV prepare pipe pile wall design; ICE review & approval; PM review, comment	266	24-Aug-21 A	16-Aug-22		
CON32402	(CE[TBA]) Additional rock break due to unforeseen ground condition @ SE1 b	139	14-Mar-22 A	22-Sep-22		
CON31170	Soil nail works (11NE-D/F246, CH190 to CH260)	150	13-Apr-22	15-Oct-22		
CON30190	Excavation, find-out rock-head & ELS works (Level 1/4)	126	29-Apr-22	28-Sep-22		
CON30652	Lay twin DN600 watermain at LCSD Area Stage 2 (FW CH050 to CH100)	71	18-May-22	10-Aug-22		
CON31708B	(EWN-C-087) utility owner design reviewing	42	17-Jun-22	05-Aug-22		
CON30656	Lay twin DN600 watermain at RW RWD1a Bay10 - Bay13 (FW CH290 to CH:	20	28-Jun-22	21-Jul-22		
CON30394	Backfill RWD1 (bay6 to bay10)	48	28-Jun-22	23-Aug-22		
CON31430	Install safety fencing, from haul road & hoarding (Slope D4, CH275 to CH430)	18	05-Jul-22	25-Jul-22		
CON30490	Drainage & utilities works (bay 8 to bay 14)	42	22-Jul-22	08-Sep-22		
CON31450	Trees feling (Sbpe D4, CH275 to CH430)	24	26-Jul-22	22-Aug-22		
CON31710	Construct footing, pier & pier head F1-4	144	06-Aug-22	31-Jan-23		
CON30670	Application of TTA / discussion with WSD for fresh watermain B and salt watern	60	11-Aug-22	22-Oct-22		
CON31470	Erect working platform	24	23-Aug-22	20-Sep-22		
CON30660	Lay twin DN600 watermain at RW RWD1a Bay6 - Bay10 (FW CH250 to CH2!	16	24-Aug-22	10-Sep-22		
CON31490	Install monitoring & instrumentation (Slope D4, CH275 to CH430)	24	06-Sep-22	06-Oct-22		
CON30530	Drainage & utilities works (bay 1 to bay 7)	42	09-Sep-22	31-Oct-22		
CON30510	Road works (bay 8 to bay 14)	42	13-Sep-22	02-Nov-22		
CON31510	Moblization & setup for soil nails works (CH275 to CH430)	12	21-Sep-22	06-Oct-22		
CON30191	Slope works & fill no-fine concrete at slope D1 (Level 1/4, 2200m3)	72	29-Sep-22	23-Dec-22		
CON31530	Cut slope, Construct trial nails (2nos 10m depth, 3.5d/no) (CH275 to CH430)	60	07-Oct-22	15-Dec-22		
CON31290	Reinstatment works & fill no-fine concrete works	90	17-Oct-22	04-Feb-23		
CON31190	Erect working platform for soil nail works (Slope D3, CH400 to CH430)	42	17-Oct-22	03-Dec-22		
edestrian Connectivity	ty Facility (PC-E11)	623	01-Sep-21 A	20-Oct-22		
					i	
Actual Work		NE	<u>E/2017/03 Dev</u>	velopment of	derson Road Quarry Site - Investigation Design & Construction	
					ad - Improvement Works & Pedestrian Connectivity Facilities Works	Phas
Remaining M		UNCOLAI	NUQU		3-Month Rolling Programme	1 11036
Remaining W						

ztivity ID	Activity Name	Duration	Start	Finish	2022	
					Jul Aug 55 56	Sep 57
Construction Works		623	01-Sep-21 A	20-Oct-22		
CON42912	CLP off site bound cable laying works (by CLP)	155	01-Sep-21 A	05-Aug-22		
CON42630	Construct covered-walkway between PC-E11 & BBI toilet	102	04-Nov-21 A	13-Aug-22		
CON42790	E&M works to PC-E11 @E11-FB2 & E11-FB4	48	25-Nov-21 A	15-Aug-22		
CON42810	E&M works to PC-E11 @E11-FB3 & E11-FB5	48	25-Nov-21 A	15-Aug-22		
CON42650	Install glass & window to lift tower no 1	21	28-Jun-22	22-Jul-22		
CON42730	ABWF works @LT1 (inside 2nos lift shaft)	12	23-Jul-22	05-Aug-22		
CON42830	E&M works to PC-E11 @LT1 (inside 2nos lift shaft)	12	06-Aug-22	19-Aug-22		
CON42850	E&M works to PC-E11 @E11-FB1	48	06-Aug-22	03-Oct-22		
CON42732	ABWF works @LT1 (Other than lift shaft area)	48	06-Aug-22	03-Oct-22		
CON42952	T&C to lift E11-LT2	30	06-Aug-22	09-Sep-22		
CON42610A	Install fall arrest system on roof of footbridge	36	06-Aug-22	17-Sep-22		
CON42930	Lifts installation works in E11-LT1	60	09-Aug-22	20-Oct-22		
CON42832	E&M works to PC-E11 @LT1 (Other than lift shaft area)	36	20-Aug-22	03-Oct-22		
Pedestrian Connectivity Faci		175	14-May-22	09-Dec-22		
Construction Works		175	14-May-22	09-Dec-22		
CON50410	Lifts installation works in SYA-LT1A & SYA-LT1B	60	14-May-22	25-Jul-22		
CON50310	Construct deck slab, planter wall and roofing for SYA	78	30-May-22	30-Aug-22		
CON50430	Lifts installation works in SYA-LT1C & SYA-LT2A	60	29-Jun-22	07-Sep-22		
CON50350	ABWF works (footbridge)	84	31-Aug-22	09-Dec-22		
CON50450	T&C and Statutory Inspection to 4nos lift SYA	30	08-Sep-22	15-Oct-22		
Pedestrian Connectivity Faci		233	16-May-22	23-Feb-23		
Construction Works		233	16-May-22	23-Feb-23		
CON53330	GEO review & approval design for additional temporary road near PC3	90	16-May-22	30-Aug-22		
CON52226	Review & acceptance works submission for temporary working platform near f	60	26-May-22	05-Aug-22		
CON51450C	(NCE170) Inclement weather (21/9/2021 to 20/10/2021) on Sys B PC1	7	15-Jul-22	22-Jul-22		
CON52110	Construct pier SYB-P3 (3 pour) {PC4-R}	51	21-Jul-22	19-Sep-22		
CON51930	Construct pier SYB-P4 (2 pour) {PC6-R}	42	21-Jul-22	07-Sep-22		
CON51452	(NCE156) Temporary supporting to existing utilities	5	23-Jul-22	28-Jul-22		
CON51468	Install pipe pile wall	9	23-Jul-22 29-Jul-22	08-Aug-22		
CON51468 CON52228	Erect working platform	32	06-Aug-22	13-Sep-22		
CON52228 CON51470	Excavate & install support at SYB-PC1 (108m3, 25m3/d, 1 team + 12d)	12	09-Aug-22	22-Aug-22		
CON51470	Construct pile cap SYB-PC1 (35m3)	30	23-Aug-22	27-Sep-22		
CON53350	Mobilisation & set up	7	31-Aug-22	07-Sep-22		
CON51950	Construct pier SYB-P6 (3 pour) {PC6-L}	52	08-Sep-22	10-Nov-22		
CON52530	Construct escalator pit P4 to P7	48	08-Sep-22	05-Nov-22		
CON52550 CON53370	Cut-slope works & installation of temporary soil nail	36	08-Sep-22	22-Oct-22		
CON52250	Erect footbridge steel frame PC8 to PC7 (P8 to P7)	12	14-Sep-22	27-Sep-22		
CON52250	Construct pier SYB-P5 (5 pour) {PC4-L}	65	20-Sep-22	06-Dec-22		
CON52150	Construct pier SYB-P1 (1 pour) {PC1}	28	20-Sep-22 28-Sep-22	00-Dec-22 01-Nov-22		
CON52230	Erect footbridge steel frame SYB-A1 to PC8 (A1 to P8)	12	28-Sep-22	13-Oct-22		
CON53230	Application for power supply & energization (SYB)	12	28-Sep-22	23-Feb-23		
CON53230 CON52390	Construct deck slab, planter wall and roofing PC8 to PC7 (P8 to P7)	30	28-Sep-22 28-Sep-22	03-Nov-22	_	
CON52390 CON52370		30	14-Oct-22	17-Nov-22		
001002370	Construct deck slab, planter wall and roofing SYB-A1 to PC8 (A1 to P8)	30	14-00-22	17-INOV-22		

Actual Work

Remaining Work

NE/2017/03 Development of Anderson Road Quarry Site - Investigation Design & Construction Development of Anderson Road Quarry Site Road - Improvement Works & Pedestrian Connectivity Facilities Works Phase 2A

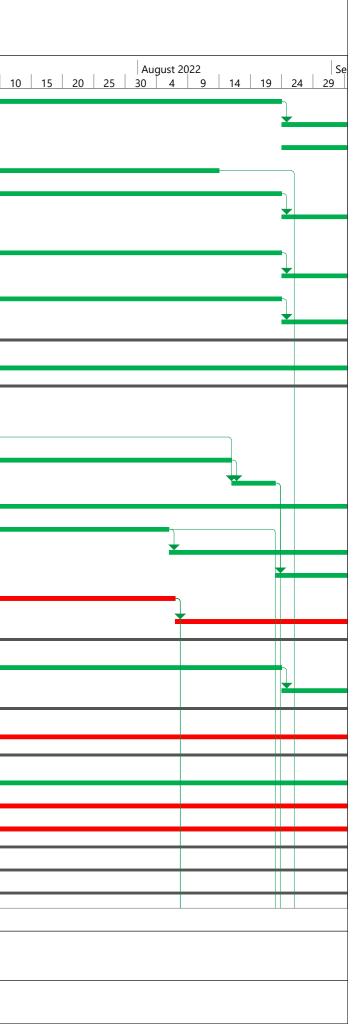
♦ ♦ Milestone

3-Month Rolling Programme

	Oct
	Oct 58
C	
C	
C	
C	
C	
[
[
[
[
[
[
[
[
[
E	
E	
E	
E	

Contract 4 (ED/2020/02)

Стс	W 中国水利电: China International W	力对外有限公司 ater & Electric Corp.	Development of Ander	son Road Q	DD Contrac uarry Site – d Works Pro	Infrastruct	ure, Greening	g and Land	scape	Works		
)	Activity Code	Activity Name	Dur	Early Start	Early Finish	Late Start	Late Finish	June 2022 31 5	10 1	5 20		uly 2022 0 5
1	ED202.1	Contract Period	1248d	Fri 30/7/21	Sat 28/12/24	Fri 30/7/21	Sat 28/12/24	51 5	10 1:	5 20	25 5	0 5
3	ED202.1.02	Contract Duration	1247d	Sat 31/7/21	Sat 28/12/24	Sat 31/7/21	Sat 28/12/24					
5	ED202.2	Section of Works and Relevant Portions of Work	1248d	Fri 30/7/21	Sat 28/12/24	Fri 30/7/21	Sat 28/12/24					
6	ED202.2.01	Section of Works 1 - Portions 1a, 2a & 2b	836d	Mon 30/8/21	Thu 14/12/23	Mon 30/8/21	Thu 14/12/23					
8	ED202.2.01.002	Construction Duration for Portion 1a	594d	Fri 29/4/22	Wed 13/12/23	Fri 29/4/22	Wed 13/12/23					
11	ED202.2.01.005	Construction Duration for Portion 2a	836d	Mon 30/8/21	Wed 13/12/23	Mon 30/8/21	Wed 13/12/23					
14	ED202.2.01.008	Construction Duration for Portion 2b	730d	Tue 14/12/21	Wed 13/12/23	Tue 14/12/21	Wed 13/12/23					
20	ED202.2.03	Section of Works 2 - Portion 8	730d	Fri 30/7/21	Sat 29/7/23	Fri 30/7/21	Sat 29/7/23					
22	ED202.2.03.002	Construction Duration for Portion 8	730d	Fri 30/7/21	Sat 29/7/23	Fri 30/7/21	Sat 29/7/23					
28	ED202.2.05	Section of Works 3 - Portions 1b, 3, 4, 5	731d	Fri 30/7/21	Sun 30/7/23	Fri 30/7/21	Sun 30/7/23					
34	ED202.2.05.005	Construction Duration for Portion 3	609d	Mon 29/11/21	Sun 30/7/23	Mon 29/11/21	Sun 30/7/23					
37	ED202.2.05.008	Construction Duration for Portion 4	670d	Fri 30/7/21	Tue 30/5/23	Fri 30/7/21	Tue 30/5/23					
40	ED202.2.05.011	Construction Duration for Portion 5	458d	Sun 27/2/22	Tue 30/5/23	Sun 27/2/22	Tue 30/5/23					
46	ED202.2.07	Section of Works 4 - Portions 6, 12	684d	Fri 30/7/21	Tue 13/6/23	Fri 30/7/21	Tue 13/6/23					
48	ED202.2.07.002	Construction Duration for Portion 6	501d	Sat 29/1/22	Tue 13/6/23	Sat 29/1/22	Tue 13/6/23					
51	ED202.2.07.005	Construction Duration for Portion 12	684d	Fri 30/7/21	Tue 13/6/23	Fri 30/7/21	Tue 13/6/23					
57	ED202.2.09	Section of Works 5A - Portions 9, 10	699d	Fri 30/7/21	Wed 28/6/23	Fri 30/7/21	Wed 28/6/23					
59	ED202.2.09.002	Construction Duration for Portion 9	638d	Wed 29/9/21	Wed 28/6/23	Wed 29/9/21	Wed 28/6/23					
62	ED202.2.09.005	Construction Duration for Portion 10	699d	Fri 30/7/21	Wed 28/6/23	Fri 30/7/21	Wed 28/6/23					
68	ED202.2.11	Section of Works 5B - Portion 11	487d	Sun 27/2/22	Wed 28/6/23	Sun 27/2/22	Wed 28/6/23					
70	ED202.2.11.002	Construction Duration for Portion 11	487d	Sun 27/2/22	Wed 28/6/23	Sun 27/2/22	Wed 28/6/23					
80	ED202.2.14	Section of Works 7A - Portions 13a, 14	669d	Fri 30/7/21	Mon 29/5/23	Fri 30/7/21	Mon 29/5/23					
82	ED202.2.14.002	Construction Duration for Portion 13a	486d	Sat 29/1/22	Mon 29/5/23	Sat 29/1/22	Mon 29/5/23					
85	ED202.2.14.005	Construction Duration for Portion 14	669d	Fri 30/7/21		Fri 30/7/21	Mon 29/5/23	-				
91	ED202.2.16	Section of Works 7B - Portions 13b, 15	671d	Sun 27/2/22	Fri 29/12/23	Sun 27/2/22	Fri 29/12/23					
93	ED202.2.16.002	Construction Duration for Portion 13b	671d	Sun 27/2/22	Fri 29/12/23	Sun 27/2/22	Fri 29/12/23					
96	ED202.2.16.005	Construction Duration for Portion 15	671d	Sun 27/2/22	Fri 29/12/23	Sun 27/2/22	Fri 29/12/23	-				
102	ED202.2.18	Section of Works 8 - Portion 16	378d	Thu 16/6/22	Wed 28/6/23	Thu 16/6/22	Wed 28/6/23		-			
103	ED202.2.18.001	Access date for Portion 16	Od	Thu 16/6/22	Thu 16/6/22	Thu 16/6/22	Thu 16/6/22		•	16/6		
104	ED202.2.18.002	Construction Duration for Portion 16	378d	Thu 16/6/22	Wed 28/6/23	Thu 16/6/22	Wed 28/6/23	-	, T			
	ED202.2.20	Section of Works 9 - Portion 17	671d	Sun 27/2/22	Fri 29/12/23	Sun 27/2/22	Fri 29/12/23					
112	ED202.2.20.002	Construction Duration for Portion 17	671d	Sun 27/2/22	Fri 29/12/23	Sun 27/2/22	Fri 29/12/23					
	ED202.2.22	Section of Works 10 - All Tree Protection and Prese		Fri 30/7/21	Fri 29/12/23	Fri 30/7/21	Fri 29/12/23					
120	ED202.2.22.002	All Tree Protection and Preservation Work Duration		Fri 30/7/21	Fri 29/12/23	Fri 30/7/21	Fri 29/12/23					
122	ED202.3	Preliminaries	1248d	Fri 30/7/21	Sat 28/12/24		Sat 28/12/24					
180	ED202.3.03	Procurements of Major Materials	430d	Tue 15/2/22	Thu 20/4/23	Sun 20/3/22	Tue 7/11/23					
roject	t Start Date: 30 July 2021 late: 30 July 2021					tical Task		I				
Ipdate Revisio	ed on : 30 April 2022 on:0				Pa	ge 1/5						

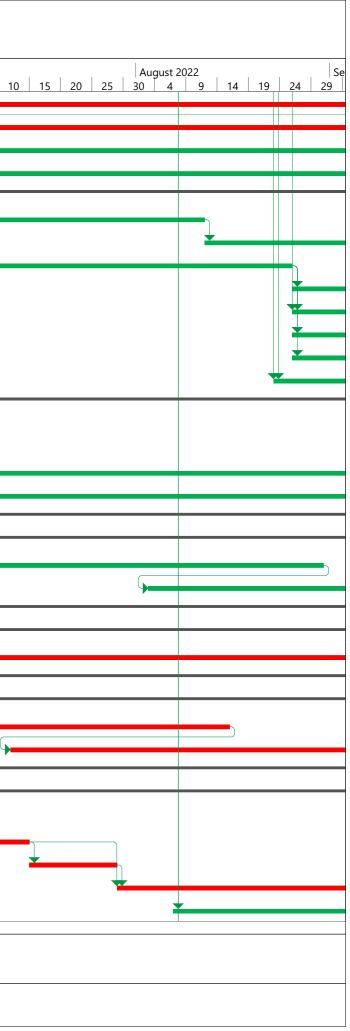

10		15		20		25		Ai 30	ugu	ıst 2 4	202	2		14		19		24		Se 29
	_		_				_								_		_		_	
	_		_		_		_						_		_		_		_	
									_		_	_			_				_	

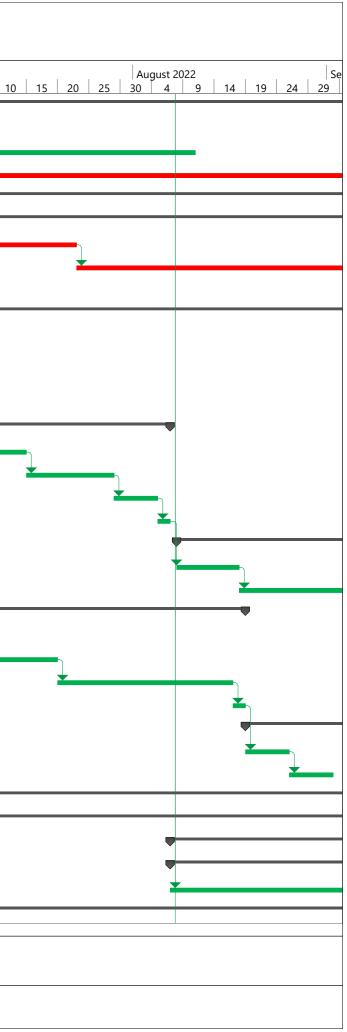
中国水利电力对外有限公司 CTG China International Water & Electric Corp.

CEDD Contract No. ED/2020/02 Development of Anderson Road Quarry Site – Infrastructure, Greening and Landscape Works Revised Works Programme : April 2022

				IVENISE		yi anni - A	prii 2022			
ID	Activity Code	Activity Name	Dur	Early Start	Early Finish	Late Start	Late Finish	June 2022		July 2022 30 5 1
181	ED202.3.03.001	Procurement & material submission of bearing for elevated walkway	90d	Thu 26/5/22	Tue 23/8/22	Mon 13/3/23	Sat 10/6/23	31 5 10 -	15 20 25	30 5 1
182	ED202.3.03.002	Design, manufacturing and FAT of bearing for elevated walkway	90d	Wed 24/8/22	Mon 21/11/22	Sun 11/6/23	Fri 8/9/23	-		
184	ED202.3.03.004	Procurement & material submission of movement joinst for elevated walk	a 90d	Wed 24/8/22	Mon 21/11/22	Mon 13/3/23	Sat 10/6/23	-		
188	ED202.3.03.008	Manufacturing, FAT & delivery of Raise Planter Type A&B	90d	Mon 16/5/22	Sat 13/8/22	Sat 18/6/22	Thu 15/9/22			
191	ED202.3.03.011	Procurement of Children Play Areas & water play area Park Facilities	90d	Thu 26/5/22	Tue 23/8/22	Sun 28/8/22	Fri 25/11/22			
192	ED202.3.03.012	Design, Manufacturing, FAT & delivery of Children Play Areas & water play area Park Facilities	90d	Wed 24/8/22	Mon 21/11/22	Sat 26/11/22	Thu 23/2/23			
193	ED202.3.03.013	Procurement of Adult fitness Area Park Facilities	90d	Thu 26/5/22	Tue 23/8/22	Sun 28/8/22	Fri 25/11/22			
194	ED202.3.03.014	Design Manufacturing, FAT & delivery of Adult fitness Area Park Facilitie	s90d	Wed 24/8/22	Mon 21/11/22	Sat 26/11/22	Thu 23/2/23			
195	ED202.3.03.015	Procurement of Elderly fitness Area Park Facilities	90d	Thu 26/5/22	Tue 23/8/22	Sun 28/8/22	Fri 25/11/22			
196	ED202.3.03.016	Design, Manufacturing, FAT & delivery of Elderly fitness Area Park Facili	t 90d	Wed 24/8/22	Mon 21/11/22	Sat 26/11/22	Thu 23/2/23			
197	ED202.3.04	Programme	1239d	Fri 30/7/21	Thu 19/12/24	Fri 30/7/21	Sat 28/12/24			
203	ED202.3.04.006	Implementation of Programme Management and Monthly Reporting	1145d	Mon 1/11/21	Thu 19/12/24	Mon 1/11/21	Sat 28/12/24			
224	ED202.3.06	Contractor's Design	659d	Fri 30/7/21	Fri 19/5/23	Fri 30/7/21	Wed 4/10/23			
230	ED202.3.06.006	DDA Submission (circulation to Government Authorities)	7d	Thu 26/5/22	Wed 1/6/22	Thu 26/5/22	Wed 1/6/22	·		
231	ED202.3.06.007	Time risk allowance for DDA processing	30d	Thu 2/6/22	Fri 1/7/22	Sun 12/6/22	Mon 11/7/22	•		
232	ED202.3.06.008	Vetting Process and Approval by Government Authorities and PM	45d	Sat 2/7/22	Mon 15/8/22	Wed 13/7/22	Fri 26/8/22	-		+
233	ED202.3.06.009	Design Checker issue certificate of Approved Design	7d	Tue 16/8/22	Mon 22/8/22	Sat 27/8/22	Fri 2/9/22	-		
234	ED202.3.06.010	Prepare Contractor's Design - Toilet , Management office & Store room	90d	Sat 2/7/22	Thu 29/9/22	Tue 12/7/22	Sun 9/10/22			•
238	ED202.3.06.014	Internal review, ICE, CSD and submission Contractor's Design - Underg	r 90d	Sun 8/5/22	Fri 5/8/22	Sun 5/6/22	Fri 2/9/22			
239	ED202.3.06.015	AIP Contractor's Design - Underground Water Treatment Plant	30d	Sat 6/8/22	Sun 4/9/22	Mon 17/10/22	Tue 15/11/22	-		
240	ED202.3.06.017	Prepare Contractor's Design - Entry Portal, Shelters, Signage, Solar Pan	e150d	Tue 23/8/22	Thu 19/1/23	Thu 15/12/22	Sat 13/5/23	-		
243	ED202.3.06.020	Prepare Contractor's Design - Park lighting, irrigation system, smart system	e70d	Sun 29/5/22	Sat 6/8/22	Sun 29/5/22	Sat 6/8/22	-		
244	ED202.3.06.021	Internal review, ICE, CSD and submission Contractor's Design - Park light	n 40d	Sun 7/8/22	Thu 15/9/22	Sun 7/8/22	Thu 15/9/22	-		
246	ED202.3.07	Contractor's Design [Enhancement on Architectural Design & Associa	t 450d	Fri 30/7/21	Sat 22/10/22	Fri 30/7/21	Thu 27/10/22			
252	ED202.3.07.006	Preparation & submission of detailed design for approval	90d	Thu 26/5/22	Tue 23/8/22	Tue 31/5/22	Sun 28/8/22			
253	ED202.3.07.007	Time risk allowance for DDA processing	30d	Wed 24/8/22	Thu 22/9/22	Mon 29/8/22	Tue 27/9/22	-		
267	ED202.3.09	BIM Deliverable	1248d	Fri 30/7/21	Sat 28/12/24	Fri 30/7/21	Sat 28/12/24			
274	ED202.3.09.007	Monthly Coordination meeting & Submission of monthly BIM progress re	p1098d	Mon 27/12/21	Sat 28/12/24	Mon 27/12/21	Sat 28/12/24			
280	ED202.4	Work Area	1248d	Fri 30/7/21	Sat 28/12/24	Fri 30/7/21	Sat 28/12/24			
285	ED202.4.05	CRE Site office Mobilization & Maintenance	1050d	Mon 24/1/22	Sun 8/12/24	Sun 13/2/22	Sat 28/12/24			
287	ED202.4.07	Maintenance Duration for Works Area	1247d	Sat 31/7/21	Sat 28/12/24	Sat 31/7/21	Sat 28/12/24			
290	ED202.4.10	Contractor Site office Maintenance	1050d	Mon 24/1/22	Sun 8/12/24	Mon 24/1/22	Sun 8/12/24	-		
291	ED202.5	Construction Works	1039d	Fri 30/7/21	Sat 28/12/24	Fri 30/7/21	Sat 28/12/24			
292	ED202.5.01	Section of Works 1 - Portions 1a, 1b, 2b	697d	Mon 30/8/21	Wed 13/12/23	Mon 30/8/21	Wed 13/12/23			
293	ED202.5.01.001	Portion 1a	556d	Thu 17/2/22	Wed 13/12/23	Thu 17/2/22	Wed 13/12/23			
	Start Date: 30 July 2021 ate: 30 July 2021	Task Milestone ♦	Summa	ry 🛡	Crit	tical Task				
Update Revisio	ed on : 30 April 2022 on:0				Pa	ge 2/5				

Revision:0




中国水利电力对外有限公司 CTG CTG China International Water & Electric Corp.

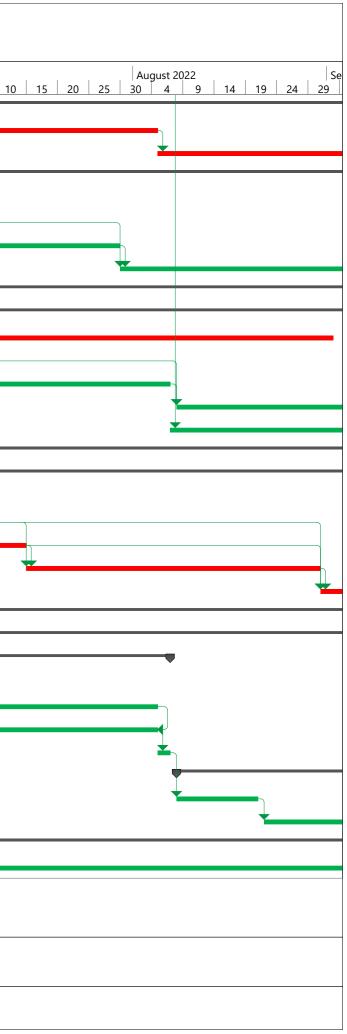
CEDD Contract No. ED/2020/02 Development of Anderson Road Quarry Site – Infrastructure, Greening and Landscape Works Revised Works Programme : April 2022

				I CVISC		grannie . A	pm 2022			
D	Activity Code	Activity Name	Dur	Early Start	Early Finish	Late Start	Late Finish	June 2022 31 5 10	15 20 25	July 2022
298	ED202.5.01.001.005	Excavation and Construction of Drainage Works	90d	Sat 21/5/22	Mon 5/9/22	Sat 21/5/22	Mon 5/9/22			
299	ED202.5.01.001.006	Pipe laying, backfilling and reinstatement work	90d	Mon 27/6/22	Thu 13/10/22	Mon 27/6/22	Thu 13/10/22			
302	ED202.5.01.001.009	Excavation and Construction of Waterworks	90d	Sat 21/5/22	Mon 5/9/22	Tue 12/7/22	Thu 27/10/22			
304	ED202.5.01.001.011	Excavation and construction of draw pits and ducting	90d	Sat 21/5/22	Mon 5/9/22	Tue 16/8/22	Thu 1/12/22			
316	ED202.5.01.002	Portion 2a	697d	Mon 30/8/21	Wed 13/12/23	Mon 30/8/21	Wed 13/12/23			
324	ED202.5.01.002.008	Excavation and Construction of Waterlines for treated water & flushin	ر90d	Tue 26/4/22	Thu 11/8/22	Thu 21/7/22	Sat 5/11/22			
325	ED202.5.01.002.009	Testing and Commissioning of Waterlines for treated water and flushing	ii 30d	Fri 12/8/22	Fri 16/9/22	Mon 7/11/22	Sat 10/12/22			
327	ED202.5.01.002.013	Construction of bioswale system	90d	Wed 11/5/22	Thu 25/8/22	Tue 24/5/22	Wed 7/9/22			
328	ED202.5.01.002.014	Backfilling and plannting for bioswale system	60d	Fri 26/8/22	Mon 7/11/22	Wed 8/2/23	Wed 19/4/23			
331	ED202.5.01.002.017	Construction of raised planter seat A	90d	Fri 26/8/22	Mon 12/12/22	Fri 16/9/22	Mon 2/1/23			
333	ED202.5.01.002.019	Construction of water play area	90d	Fri 26/8/22	Mon 12/12/22	Tue 3/1/23	Wed 19/4/23			
334	ED202.5.01.002.020	Construction of U-channels & catchpits	90d	Fri 26/8/22	Mon 12/12/22	Mon 28/11/22	Tue 14/3/23	-		
344	ED202.5.01.002.046	Construction of Water Treatment Plant RC Structure	60d	Tue 23/8/22	Thu 3/11/22	Sat 3/9/22	Tue 15/11/22	-		
364	ED202.5.01.003	Portion 2b	666d	Sat 2/10/21	Fri 8/12/23	Sat 2/10/21	Wed 13/12/23			
370	ED202.5.01.003.006	Soft landscaping works for Island	60d	Sat 23/4/22	Tue 5/7/22	Thu 28/4/22	Sat 9/7/22			
372	ED202.5.01.003.008	Construction of artificial island	60d	Sat 23/4/22	Tue 5/7/22	Thu 28/4/22	Sat 9/7/22			
373	ED202.5.01.003.009	Construction of pavers for viewing steps	90d	Wed 6/7/22	Fri 21/10/22	Mon 11/7/22	Wed 26/10/22			
378	ED202.5.01.003.014	Soft landscaping works (soil placement and planting works) for Riparia	a60d	Wed 6/7/22	Wed 14/9/22	Sat 3/9/22	Tue 15/11/22			¥
389	ED202.5.03	Section of Works 2 - Portion 8	596d	Fri 30/7/21	Mon 17/7/23	Fri 30/7/21	Sat 29/7/23			
390	ED202.5.03.001	Portion 8	596d	Fri 30/7/21	Mon 17/7/23	Fri 30/7/21	Sat 29/7/23			
399	ED202.5.03.001.009	Backfilling and compaction of materials, shelters, stairs and pavement	r 90d	Mon 16/5/22	Tue 30/8/22	Sat 28/5/22	Tue 13/9/22			
400	ED202.5.03.001.010	Tai Chi Area Construction	90d	Wed 3/8/22	Fri 18/11/22	Tue 16/8/22	Thu 1/12/22			
418	ED202.5.05	Section of Works 3 - Portions 1b, 3, 4, 5	607d	Fri 30/7/21	Sat 29/7/23	Mon 29/11/21	Sat 29/7/23			
432	ED202.5.05.002	Portion 3	506d	Mon 29/11/21	Sat 29/7/23	Mon 29/11/21	Sat 29/7/23			
437	ED202.5.05.002.005	Installation of chain-link fencing + Provision of temporary drainage sys	s 158d	Thu 3/3/22	Wed 7/9/22	Thu 3/3/22	Wed 7/9/22			
441	ED202.5.05.003	Portion 4	529d	Fri 30/7/21	Wed 26/4/23	Mon 10/10/22	Tue 30/5/23			
445	ED202.5.05.004	Portion 5	381d	Mon 28/2/22	Tue 30/5/23	Mon 28/2/22	Tue 30/5/23			
447	ED202.5.05.004.002	Installation of chain-link fencing + + Provision of temporary drainage	s 135d	Mon 7/3/22	Mon 15/8/22	Mon 7/3/22	Mon 15/8/22			
448	ED202.5.05.004.003	Ground Cleaning, Scarifying, Ripping, Cultivation and Soil Replacement	e180d	Tue 12/7/22	Sat 11/2/23	Tue 12/7/22	Sat 11/2/23	-		G
454	ED202.5.07	Section of Works 4 - Portions 6, 12	568d	Fri 30/7/21	Tue 13/6/23	Fri 30/7/21	Tue 13/6/23			
455	ED202.5.07.001	Portion 6	491d	Mon 1/11/21	Tue 13/6/23	Mon 1/11/21	Tue 13/6/23			
460	ED202.5.07.001.005	Excavation and Construction of Drainage Works	90d	Mon 21/2/22	Wed 8/6/22	Mon 21/2/22	Wed 8/6/22			
461	ED202.5.07.001.006	Testing and commissioning of Drainage Works	60d	Wed 4/5/22	Thu 14/7/22	Wed 4/5/22	Thu 14/7/22			
462	ED202.5.07.001.007	Time Risk Allowance	12d	Fri 15/7/22	Thu 28/7/22	Fri 15/7/22	Thu 28/7/22			
463	ED202.5.07.001.008	Backfilling and compaction of materials	42d	Fri 29/7/22	Fri 16/9/22	Fri 29/7/22	Fri 16/9/22	-		
464	ED202.5.07.001.018	Application for Irrigation system (WW0046 Part I & II)	30d	Sun 7/8/22	Mon 5/9/22	Tue 23/8/22	Wed 21/9/22			
	t Start Date: 30 July 2021 ate: 30 July 2021	Task Milestone ♦	Summa	ary 🛡	Crit	tical Task				
Update Revisio	ed on : 30 April 2022 on:0				Pag	ge 3/5				

TG		ter & Electric Corp. Dever	Revised Works Programme : April 2022 Dur Early Start Early Finish Late Start Late Finish										
)	Activity Code	Activity Name	Dur	Early Start	Early Finish	Late Start	Late Finish	June 2022 31 5 10	July 202 15 20 25 30 5				
474	ED202.5.07.002	Portion 12	568d	Fri 30/7/21	Tue 13/6/23	Fri 30/7/21	Tue 13/6/23						
485	ED202.5.07.002.010	Miscellaneous works (e.g. irrigation system)	60d	Thu 31/3/22	Sat 11/6/22	Fri 27/5/22	Sat 6/8/22						
486	ED202.5.07.002.011	Application for Irrigation system (WW0046 Part IV & V)	60d	Sun 12/6/22	Wed 10/8/22	Sat 15/4/23	Tue 13/6/23						
488	ED202.5.07.002.013	Backfilling and compaction of materials	90d	Fri 27/5/22	Mon 12/9/22	Fri 27/5/22	Mon 12/9/22	_					
499	ED202.5.09	Section of Works 5A - Portions 9, 10	581d	Fri 30/7/21	Wed 28/6/23	Fri 30/7/21	Wed 28/6/23	l					
500	ED202.5.09.001	Portion 9 [Sitting Out Area C & R2-1 Footpath]	530d	Wed 29/9/21	Wed 28/6/23	Wed 29/9/21	Wed 28/6/23						
510	ED202.5.09.001.009	Backfilling and compaction of road materials	60d	Thu 12/5/22	Fri 22/7/22	Thu 12/5/22	Fri 22/7/22						
511	ED202.5.09.001.010	Construction of proposed U-channel	60d	Sat 23/7/22	Mon 3/10/22	Sat 23/7/22	Mon 3/10/22	-					
517	ED202.5.09.001.016	Application for Irrigation system (WW0046: Part IV & V)	60d	Wed 27/4/22	Sat 25/6/22	Sun 30/4/23	Wed 28/6/23	-					
518	ED202.5.09.002	Portion 10	581d	Fri 30/7/21	Wed 28/6/23	Fri 30/7/21	Wed 28/6/23						
534	ED202.5.09.002.010	Slope Works at Feature No. 11NE-D/C1003 (265m)	41d	Mon 16/5/22	Mon 4/7/22	Mon 16/5/22	Wed 28/6/23						
536	ED202.5.09.002.010.02	Construction of concrete berm	21d	Mon 30/5/22	Thu 23/6/22	Thu 25/5/23	Mon 19/6/23						
537	ED202.5.09.002.010.03	Installation of hand railings	6d	Fri 24/6/22	Thu 30/6/22	Tue 20/6/23	Mon 26/6/23	-					
538	ED202.5.09.002.010.04	Installation of display sign for slope registration no. x	1 2d	Sat 2/7/22	Mon 4/7/22	Tue 27/6/23	Wed 28/6/23	-					
539	ED202.5.09.002.014	Slope Works at Feature No. 11NE-D/C1006 (60m)	29d	Tue 5/7/22	Sat 6/8/22	Tue 5/7/22	Wed 28/6/23						
540	ED202.5.09.002.014.01	Demolition and removal of disused water pipe and sp	orinkler system 9d	Tue 5/7/22	Thu 14/7/22	Tue 5/7/22	Thu 14/7/22		L				
541	ED202.5.09.002.014.02	Construction of concrete berm (~30m)	12d	Fri 15/7/22	Thu 28/7/22	Tue 6/6/23	Mon 19/6/23	-					
542	ED202.5.09.002.014.03	Installation of hand railings (~30m)	6d	Fri 29/7/22	Thu 4/8/22	Tue 20/6/23	Mon 26/6/23	-					
543	ED202.5.09.002.014.04	Installation of display sign for slope registration no. x	1 2d	Fri 5/8/22	Sat 6/8/22	Tue 27/6/23	Wed 28/6/23	-					
544	ED202.5.09.002.015	Slope Works at Feature No. 11NE-D/C987 (90m)	77d	Mon 8/8/22	Tue 8/11/22	Mon 8/8/22	Wed 28/6/23						
545	ED202.5.09.002.015.01	Demolition and removal of disused water pipe and sp	orinkler system 9d	Mon 8/8/22	Wed 17/8/22	Mon 8/8/22	Wed 17/8/22						
546	ED202.5.09.002.015.02	Construction of concrete berm	24d	Thu 18/8/22	Thu 15/9/22	Sat 8/4/23	Sat 6/5/23	-					
581	ED202.5.09.002.019	Slope Works at Feature No. 11NE-D/C977 (300m)	68d	Mon 30/5/22	Thu 18/8/22	Wed 1/6/22	Sat 20/8/22						
582	ED202.5.09.002.019.01	Demolition and removal of disused water pipe and sp	orinkler system 18d	Mon 30/5/22	Mon 20/6/22	Wed 1/6/22	Wed 22/6/22						
583	ED202.5.09.002.019.02	Construction of 450 mm U-channel (~175m)	24d	Tue 21/6/22	Tue 19/7/22	Thu 23/6/22	Thu 21/7/22						
584	ED202.5.09.002.019.03	Construction of wire mesh	24d	Wed 20/7/22	Tue 16/8/22	Fri 22/7/22	Thu 18/8/22						
585	ED202.5.09.002.019.04	Installation of display sign for slope registration no. x	2 2d	Wed 17/8/22	Thu 18/8/22	Fri 19/8/22	Sat 20/8/22						
586	ED202.5.09.002.020	Slope Works at Feature No. 11NE-D/C986 (190m)	53d	Fri 19/8/22	Sat 22/10/22	Mon 22/8/22	Tue 25/10/22						
587	ED202.5.09.002.020.01	Demolition and removal of disused water pipe and sp	orinkler system 6d	Fri 19/8/22	Thu 25/8/22	Mon 22/8/22	Sat 27/8/22						
588	ED202.5.09.002.020.02	Filling of void with cement soil	6d	Fri 26/8/22	Thu 1/9/22	Mon 29/8/22	Sat 3/9/22						
624	ED202.5.11	Section of Works 5B - Portion 11	391d	Mon 28/2/22	Mon 12/6/23	Tue 11/4/23	Wed 28/6/23						
625	ED202.5.11.001	Portion 11	391d	Mon 28/2/22	Mon 12/6/23	Tue 11/4/23	Wed 28/6/23						
528	ED202.5.12	Section of Works 6 - Portion 7	394d	Sun 7/8/22	Tue 21/11/23	Tue 6/12/22	Tue 28/11/23						
529	ED202.5.12.001	Portion 7	394d	Sun 7/8/22	Tue 21/11/23	Tue 6/12/22	Tue 28/11/23						
636	ED202.5.12.001.010	Application for Irrigation system (WW0046 Part I & II)	30d	Sun 7/8/22	Mon 5/9/22	Sat 6/5/23	Sun 4/6/23						
644	ED202.5.14	Section of Works 7A - Portions 13a, 14	556d	Fri 30/7/21	Mon 29/5/23	Fri 30/7/21	Mon 29/5/23						
	Start Date: 30 July 2021 ate: 30 July 2021	Task Milestone 🔶	Summa	ary 🛡	Cri	tical Task							
	d on : 30 April 2022				Pa	ge 4/5							

IG	で の の の の し し の の し し	Letric Corp. Development of	Ande	rson Road Q	EDD Contrac Quarry Site – ed Works Pro	Infrastruct	ure, Greenin	g and Landscap	e Works
	Activity Code	Activity Name	Dur	Early Start	Early Finish	Late Start	Late Finish	June 2022 31 5 10	July 20
45	ED202.5.14.001	Portion 13a	404d	Sat 29/1/22	Mon 29/5/23	Sat 29/1/22	Mon 29/5/23		
50	ED202.5.14.001.005	Bulk excavation of cut slope {Access path & Site G-2}	60d	Wed 25/5/22	Thu 4/8/22	Wed 25/5/22	Thu 4/8/22	ļ	
51	ED202.5.14.001.006	Cutting & filling of slopes to formation level {Access path & Site G-2}	90d	Fri 5/8/22	Mon 21/11/22	Fri 5/8/22	Mon 21/11/22	_	
55	ED202.5.14.002	Portion 14	423d	Fri 30/7/21	Tue 20/12/22	Fri 30/7/21	Mon 29/5/23	<u> </u>	+
52	ED202.5.14.002.008	Excavation and Construction of Waterlines for fresh water & flushing	v60d	Fri 25/3/22	Mon 6/6/22	Thu 1/9/22	Sat 12/11/22		
63	ED202.5.14.002.009	Application for (WW0046: Part IV & V)	30d	Tue 7/6/22	Wed 6/7/22	Wed 7/12/22	Thu 5/1/23	-	
64	ED202.5.14.002.010	Testing and Commissioning of Waterlines for fresh water and flushing	30d	Fri 24/6/22	Fri 29/7/22	Thu 1/12/22	Thu 5/1/23	-	-
65	ED202.5.14.002.011	Construction of pavement footpath	90d	Sat 30/7/22	Tue 15/11/22	Fri 6/1/23	Sat 22/4/23	-	
572	ED202.5.16	Section of Works 7B - Portions 13b, 15	560d	Mon 28/2/22	Fri 29/12/23	Mon 7/3/22	Fri 29/12/23	<u> </u>	
573	ED202.5.16.001	Portion 13b & 15	560d	Mon 28/2/22	Fri 29/12/23	Mon 7/3/22	Fri 29/12/23		+
578	ED202.5.16.001.005	Modification of Ext R.W RWA10	90d	Wed 18/5/22	Thu 1/9/22	Wed 18/5/22	Thu 1/9/22	1	
585	ED202.5.16.001.012	Installation of monitoring instruments	60d	Mon 28/3/22	Wed 8/6/22	Fri 8/4/22	Sat 18/6/22	_	
586	ED202.5.16.001.013	Excavatoin of slope B3	50d	Thu 9/6/22	Sat 6/8/22	Mon 20/6/22	Wed 17/8/22	-	
587	ED202.5.16.001.014	Construction of slope B3	60d	Mon 8/8/22	Wed 19/10/22	Thu 18/8/22	Sat 29/10/22	-	
592	ED202.5.16.001.024	Application for (WW0046 Part I & II)	30d	Sun 7/8/22	Mon 5/9/22	Sat 22/4/23	Sun 21/5/23	-	
02	ED202.5.18	Section of Works 8 - Portion 16	315d	Thu 16/6/22	Wed 28/6/23	Thu 16/6/22	Wed 28/6/23	۲	
703	ED202.5.18.001	Portion 16	315d	Thu 16/6/22	Wed 28/6/23	Thu 16/6/22	Wed 28/6/23	۹	
'04	ED202.5.18.001.001	Provision of site access [321 days after starting date as per Contract]	6d	Thu 16/6/22	Wed 22/6/22	Thu 16/6/22	Wed 22/6/22	1	
705	ED202.5.18.001.002	Mobilization & Site Clearance	12d	Thu 23/6/22	Thu 7/7/22	Thu 23/6/22	Thu 7/7/22	-	•
706	ED202.5.18.001.003	Time Risk Allowance	6d	Fri 8/7/22	Thu 14/7/22	Fri 8/7/22	Thu 14/7/22	-	
07	ED202.5.18.001.004	Installation of chain-link fencing	40d	Fri 15/7/22	Tue 30/8/22	Fri 15/7/22	Tue 30/8/22	-	
708	ED202.5.18.001.008	Construction of fill slope A7	90d	Wed 31/8/22	Fri 16/12/22	Wed 31/8/22	Fri 16/12/22	_	
716	ED202.5.20	Section of Works 9 - Portion 17	629d	Wed 1/12/21	Sat 23/12/23	Wed 1/12/21	Fri 29/12/23		
717	ED202.5.20.001	Portion 17	629d	Wed 1/12/21	Sat 23/12/23	Wed 1/12/21	Fri 29/12/23		
29	ED202.5.20.001.009	Slope Works at Feature No. 11NE-D/C872 (250m)	68d	Wed 18/5/22	Sat 6/8/22	Mon 23/5/22	Thu 11/8/22		
731	ED202.5.20.001.009.02	Filling of void with concrete	6d	Wed 1/6/22	Wed 8/6/22	Tue 7/6/22	Mon 13/6/22	·	
/32	ED202.5.20.001.009.03	Installation of hand railings	54d	Wed 1/6/22	Thu 4/8/22	Tue 7/6/22	Tue 9/8/22	-	
733	ED202.5.20.001.009.04	Installation of non-biodegradable erosion control mat with hydrose	36d	Thu 23/6/22	Thu 4/8/22	Tue 28/6/22	Tue 9/8/22	-	+
734	ED202.5.20.001.009.05	Installation of display sign for slope registration no. x2	2d	Fri 5/8/22	Sat 6/8/22	Wed 10/8/22	Thu 11/8/22	-	
735	ED202.5.20.001.010	Slope Works at Feature No. 11NE-D/C948 (310m)	74d	Mon 8/8/22	Fri 4/11/22	Fri 12/8/22	Wed 9/11/22		
736	ED202.5.20.001.010.01	Demolition and removal of disused water pipe and sprinkler system	112d	Mon 8/8/22	Sat 20/8/22	Fri 12/8/22	Thu 25/8/22	1	
737	ED202.5.20.001.010.02	Construction of concrete berm	12d	Mon 22/8/22	Sat 3/9/22	Fri 26/8/22	Thu 8/9/22	-	
812	ED202.5.22	Section of Works 10 - All Tree Protection and Preservation Works	736d	Fri 30/7/21	Fri 29/12/23	Fri 30/7/21	Fri 29/12/23	<u> </u>	
	ED202.5.22.002	All Tree Protection and Preservation Work Duration for Section 8	880d	Fri 30/7/21	Tue 26/12/23	Eri 30/7/21	Fri 29/12/23	1	

Project Start Date: 30 July 2021 Data Date: 30 July 2021


Task

Milestone 🔶

Summary

Critical Task

Updated on : 30 April 2022 Revision:0

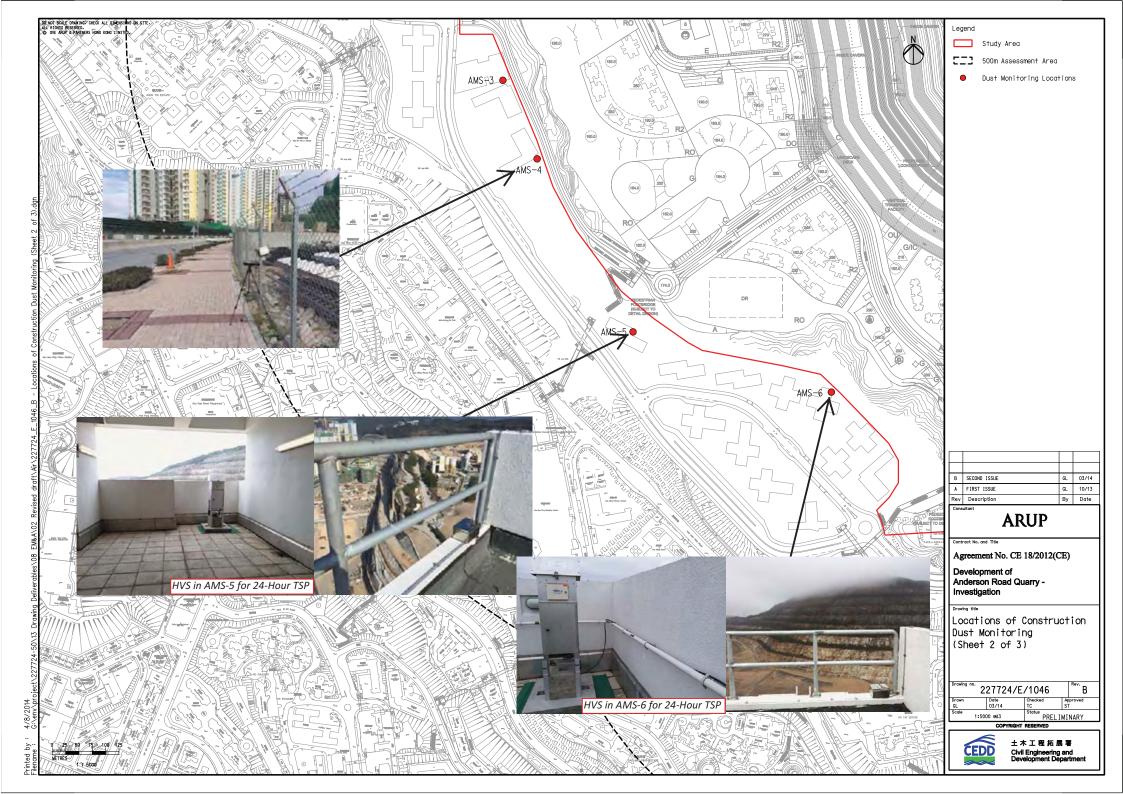
Contract 5 (NE/2019/02)

Z:\Jobs\2016\TCS00864 (CEDD)\600\EM&A Report Submission\Monthly EM&A Report\2022\July 2022\R0579v2.docx

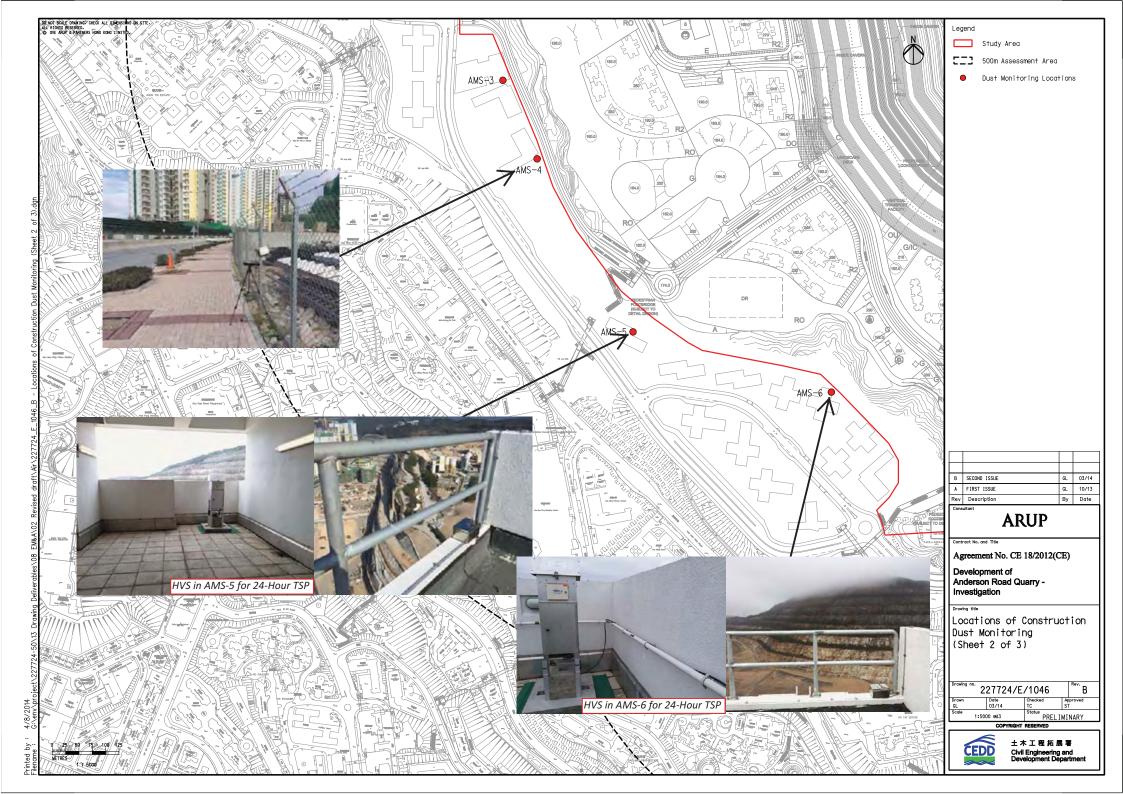
Major Activities in Coming 3 Months

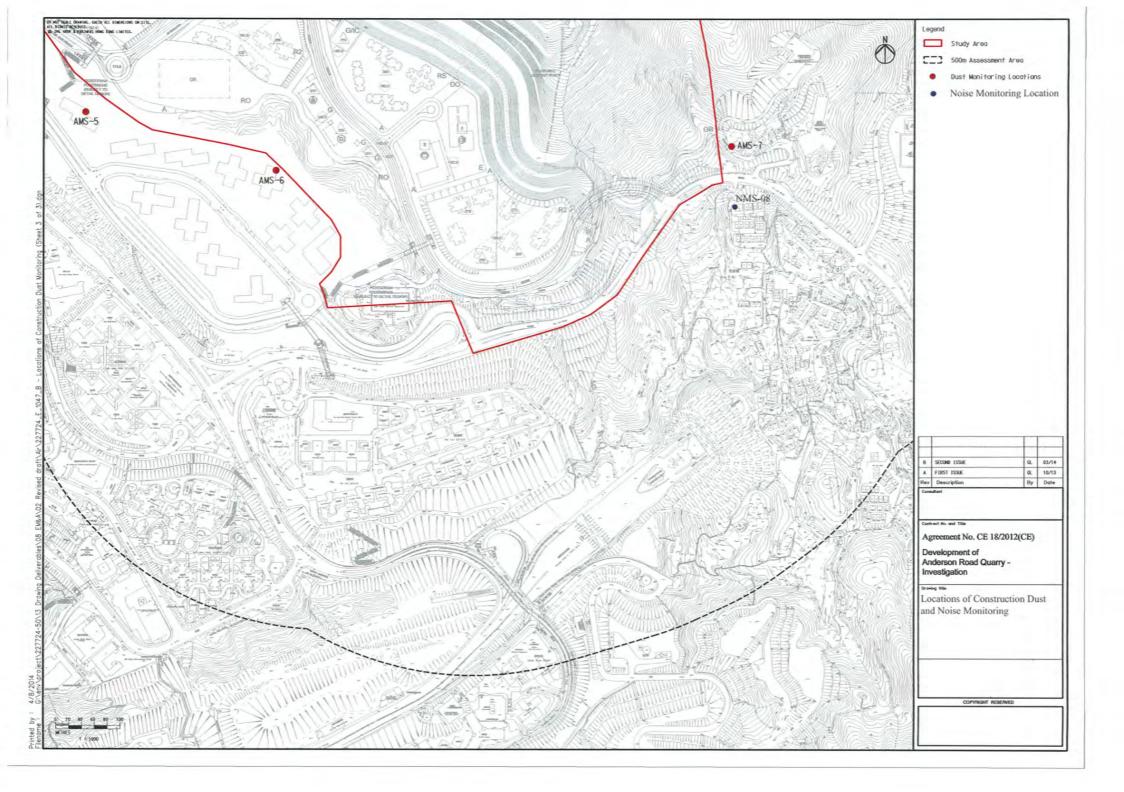
3 Months Rolling Programme (Jun 22 - Sep 22)

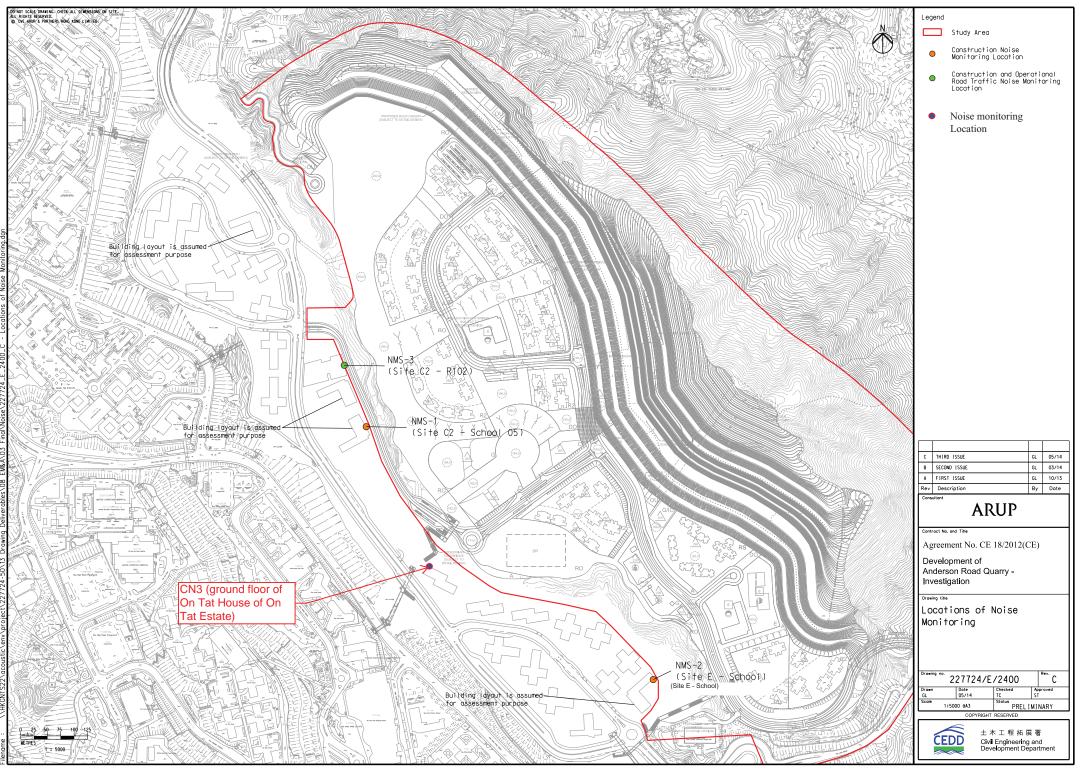
	n Jun 22		Ø.		il 22		8		Aug 2		- 28		Sep 22		
Da	te 20 - 25	27 - 2	4-9	11 - 16	18 - 23	25 - 30	1-6	8 - 13	15 - 20	22 - 27	29 - 3	5 - 10	13 - 17	19 - 24	26 - 30
1.0 Portion 1															
1.1 Piling Work at E5-PC1 Lower Platform			-												
1.2 Form Piling Platform at E5-PC3	-	1													
1.3 Implement TTA at EVA and mobilization of crawler crane				-											
1.4 Piling Works at E5-PC2 upper platform					C.	4									
1.5 Remove existing soil nail at E5-PC3						-									
1.6 Piling Work at E5-PC3								-							
1.7 Form Lower Piling Platform at E5-PC2															
1.8 Piling Works at E5-PC2 upper platform													\$	i i	
2.0 Portion 2															
2.1 Piling Work	_														
2.2 Loading test for compression & tension piles				-		<i>0</i>	81								
2.3 Install sheetpile and excavation at E6-PC1 & PC2															
2.4 Install sheetpile and excavation at E6-PC3															
2.5 Construct pile cap, column & pier head at E6-PC1 & PC2								-					-		
2.6 Construct pile cap & abutmentat E6-PC3															
3.0 Portion 3															
3.1 Lower down slope to form piling platform at +72.0mPD					1.12										
3.2 Install mini-piles at +72.0mPD						-	100		-				-		
4.0 Portion 4															
4.1 Construction of E10-F3 abutment															
4.2 Excavavtion of lift tower footing -E10-FT1					+	3									
4.3 Rock mapping									1						
4.4 Construction of footing E10-F1															

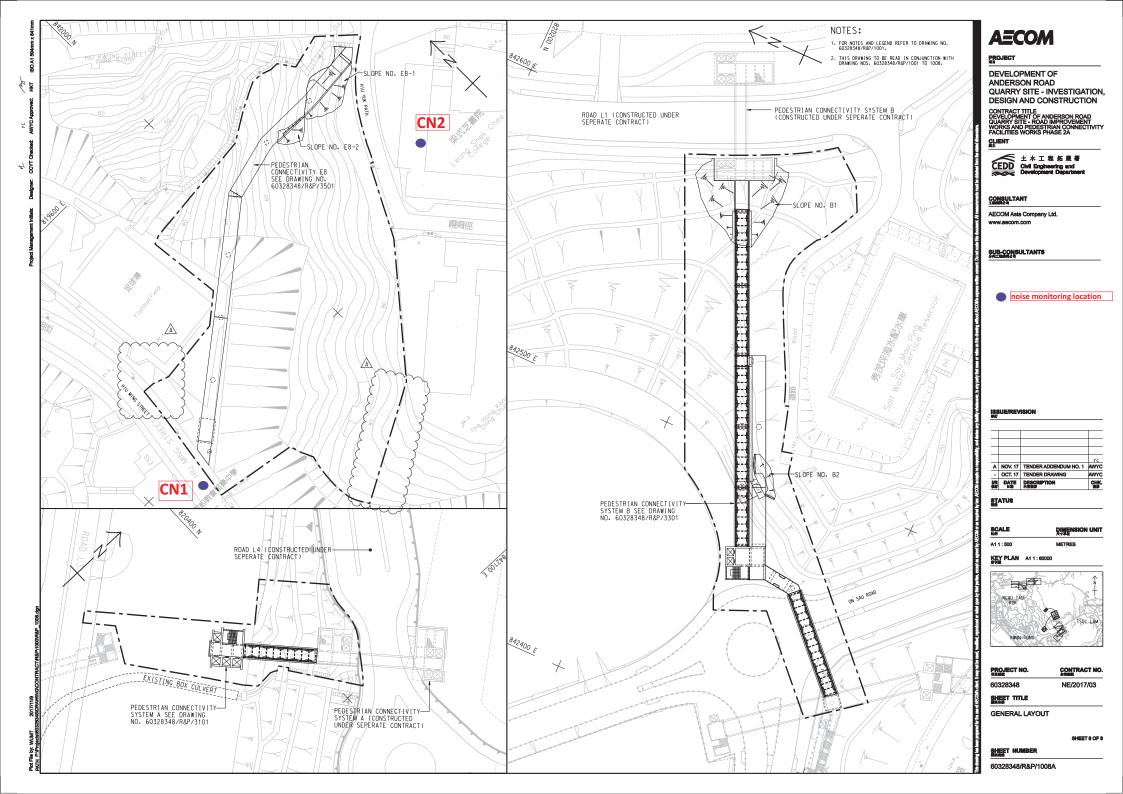

Appendix D

Monitoring Locations for Impact Monitoring


Monitoring Locations for Contract 1 (NE/2016/01)







Monitoring Locations for Contract 3 (NE/2017/03)

inted by : 6/3/ ename : \\HK

2012

Appendix E

Calibration Certificate of Monitoring Equipment and HOKLAS-accreditation Certificate of the Testing Laboratory

Location .	Tan Shan '	Village No	5-6			Date of (Calibration: 30-May-22				
Location I		AMS1a	5 0			Next Calibra	-				
	SCH High V		Sampler T	F-5170			Technician: Mr. Fai So				
1010001.110	, on the second	oranie 7 m	Sumpler 1		CONDITIO						
		Sea Leve	el Pressure	(hPa)	1005.9)	Corrected Pressure (mm Hg) 754.425				
			mperature		29.2		Temperature (K) 302				
		10	inperature	()	27.2	4					
				CALI	BRATION	DRIFICE					
				Make->	TISCH		Qstd Slope -> 1.99838				
				Model->	TE-5025A		Qstd Intercept -> -0.00903				
				Serial # ->	1941						
					CALIBRATI	ON					
Plate	H20 (L)	H2O (R)	H20	Qstd	Ι	IC	LINEAR				
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected					
18	6.4	6.4	12.8	1.776	51	50.46	Slope = 36.5599				
13	5.2	5.2	10.4	1.601	45	44.52	Intercept = -14.8015				
10	4	4	8	1.405	35	34.63	Corr. coeff. = 0.9967				
7	2.4	2.4	4.8	1.089	26	25.72					
5	1.5	1.5	3	0.862	17	16.82					
Calculatio			. 1/07 1 7								
-	n[Sqrt(H20		std/1a))-b]				FLOW RATE CHART				
IC = I[Sqr	t(Pa/Pstd)(7	[std/1a)]				^{60.00} T					
0.11	1.101										
-	ndard flow					50.00 -	>				
	cted chart r chart respor	*									
	ator Qstd sl						y				
	ator Qstd in					<u>୍</u> ତି 40.00 –					
	al temperatu		alibration ((deg K)		onse					
	ual pressure	-				20.00					
1 stu – act	uai pressure	uunng can		um ng)		1 30.00 -					
For subse	equent calc	ulation of s	ampler flo	w:		- 00.04 (IC) - 00.05 (IC) - 00.05 - 00	*				
	Sqrt(298/Ta		-			20.00 -					
1,111((1)[911(250)14	·)(1 u ·/ / 00)] 0)				▲				
m = samp	ler slope										
	ler intercept					10.00 -					
I = chart r	-										
	y average to	emperature				0.00					
	y average p					0.00					
	,						Standard Flow Rate (m3/min)				

Location :	Oi	i Tat Hou	150				Date of C	Calibration: 30-May-22
Location I		AMS 5	150			ו	Next Calibra	-
			e Air Sa	mpler TE-5	170			Fechnician: Mr. Fai So
1110401111	/on mg	ii voitaili		inpier rid e	110		ITIONS	
	Se	ea Level I	Pressure	(hPa)		1005.9]	Corrected Pressure (mm Hg) 754.425
			berature			29.2		Temperature (K) 302
		-						
					CAL	IBRATI	ON ORIFICE	E
							٦	
				Make->				Qstd Slope -> 1.99838
				Model->			-	Qstd Intercept -> -0.00903
				Serial # ->	194	-1		
						CALIBI	RATION	
Plate	<u>н20 (т.)</u>	H2O (R)	H20	Qstd		Ι	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	6	chart)	corrected	REGRESSION
18	6.4	6.4	12.8	1.776		56	55.41	Slope = 40.7127
13	5.2	5.2	12.0	1.601		47	46.50	Intercept = -18.6613
10	4.2	4.2	8.4	1.439		37	36.61	Corr. coeff. = 0.9912
7	2.6	2.6	5.2	1.133		29	28.69	
5	1.5	1.5	3	0.862		17	16.82	
	112	110	5	01002			10.02	l
Calculatio	ns :					60.0	00	FLOW RATE CHART
Qstd = 1/r	n[Sqrt(H	20(Pa/Ps	td)(Tstd	/Ta))-b]		00.		
IC = I[Sqr	t(Pa/Pstd	l)(Tstd/T	a)]					
						50.0	00	
Qstd = sta								× 1
IC = corre		_	es			<u>9</u> 40.0	nn	
I = actual		•				ee (
m = calibr	-	-				spon		
b = calibra						<u>ق</u> 30.0 ۲	00	
				bration (deg		cha		
Pstd = act	ual press	ure durin	ig calibra	ation (mm I	rlg	Actual chart response (IC) 0.05 0.05 0.05		
Far autos			-f	nlav flavu		20.0 G		
For subse	-		-					•
1/m((I)[S	oqrt(298/	Tav)(Pav	7760)]-0)		10.0	00	
m –	lor alono							
m = sample b = sample	-	o n t						
I = chart relations		ept				0.0	00 0.000	0.500 1.000 1.500 2.000
T = chart R Tav = dail	-	a tampar	otura				0.000	Standard Flow Rate (m3/min)
Pav = dail		_			l			
1 av – uan	y average	e pressur	C					

Lagation	IIe	n Tot IIo					Data of C	libration	20 1	(ar. 22			
Location :		u Tat Ho	use			N		alibration:		-			
Location]		AMS 6	A . G		170	Γ	Next Calibra			Jul-22			
Model: 11	SCH Hig	n volum	e Air Sa	mpler TE-5				echnician:	IVII. F	ai 50			
					C	ONDIT	IONS						
	C	т 11		(1.D.)		1005 0	1	C	(1 D	(TT \	764	105
	Se	a Level I				1005.9					mm Hg)	754.4	
		Temp	erature	(°C)		29.2]		Tempe	erature ()	K)		302
				C	ALIB	RATIO							
				Make->'	ГISC	Ή		Ç	ostd Sl	ope ->		1.998	338
				Model->'	TE-5	025A		Qstd	Interc	cept ->		-0.009	903
				Serial # ->	1941								
	CALIBRATION												
				1			1						
Plate H20 (L)H2O (R) H20 Qstd I IC LINEAR													
No.	(in)	(in)	(in)	(m3/min)		nart)	corrected			EGRESS			
18	6.3	6.3	12.6	1.762	4	53	52.44		Slope = 41.9587				
13	5.4	5.4	10.8	1.632	2	45	46.00		Intercept = -21.6530				
10	3.7	3.7	7.4	1.351	-	35	34.63	C	Corr. c	oeff. =	0.9943		
7	2.5	2.5	5	1.112		28	27.70						
5	1.5	1.5	3	0.862		13	12.86						
Calculatio	ne i												
Qstd = 1/r		$2\Omega(D_0/D_0)$	td)(Tatd	/Ta)) bl		60.00)	FLOW	RATE	CHART			
Qsta = 1/1 IC = I[Sq1				/1a)) - 0]									
IC – I[Sql	ur a/r su	1)(1510/1	a)]									•	
Qstd = sta	ndard fle	w rota				50.00)					\vdash	
Qstu = sta IC = corre			90										
I = actual		-	68			<u>.</u>							
m = calibi		-				40.00 Vectual chart response (IC) 40.00 Vectual chart response (IC) 00.05 Vectual chart response (IC) 40.00) -						
b = calibra	-	-	t			Suod				1	6		
	-	_		bration (deg	ĸ	8 30.00)						
				ation (mm I	$\frac{1}{3}$	hart				•/			
1 300 – 401	uai press	ure durin			1g	nal c				/			
For subse	eauent ca	alculatio	n of san	npler flow:		20.00 YC)			·			
1/m((I)[S	-			-									
	Jq11(270/	100/100	, / UU)] - [<i>)</i>		10.00			•				
m = samp	ler slope					10.00							
h = samp b = samp	-	ent											
I = chart r		υρι				0.00	, 🖵 🚽						
T = chart T Tav = dai	-			0.000	0.500	1.0		1.500	2.0	00			
Pav = dail								Standard	FIOW R	ate (m3/mi	in)		
i av – uali	iy averag	e pressui	C										

Location :	Ma Yai	ı Tong '	Village				Date of	of Calil	bration: 30-N	/lay-22			
Location I	D: /	AMS 7				N	Next Cal	libratio	n Date: 29-	-Jul-22			
Model:TIS	SCH High	Volum	e Air Sa	mpler TE-5	170			Tech	nnician: Mr. F	Fai So			
					CO	NDI	TIONS						
				_			_						
	Sea	Level I	Pressure	(hPa)	100	05.9			Corrected Pr	ressure (mn	n Hg)	754.425	
		Temp	erature	(°C)	(29.2			Temp	erature (K)		302	
		_					•		_				
				C	ALIBR	ATIC	ON ORIF	FICE					
				Make->	TISCH	[Qstd SI	ope ->		1.99838	
				Model->	TE-502	25A			Qstd Intere	cept ->		-0.00903	
				Serial # ->	1612								
					CAI	LIBR	RATION						
Plate	H20 (L)	1) (P)	H20	Qstd	Ι		IC			LINEAR			
No.	(in)	(in)	(in)	(m3/min)	(char	rt)	correct	ted	ŗ	REGRESSIO			
110.	6.5	6.5	13	1.790	56	<i>,</i>	55.41		Slope = 43.9346				
13	5.5	5.5	11	1.647	48		47.49		Intercept = -23.9309				
10	3.7	3.7	7.4	1.351	35		34.63		Corr. c	-	0.9965		
7	2.7	2.7	5.4	1.155	29		28.69		0001.0	. –	0.7705		
5	1.9	1.9	3.8	0.970	18		17.81						
	1.7	1.7	5.0	0.970	10		17.01	1					
Calculatio	ons:												
Qstd = 1/r		O(Pa/Ps	td)(Tstd	/Ta)) - h]	-								
IC = I[Sqr				<i>(1u))</i> 0]		(60.00			TE CHART			
1C – 1[541	(1 W1 5tu)	(1300/1	u)]								•		
Qstd = sta	ndard flov	w rate					50.00						
IC = correction			es				50.00						
I = actual		-	•••										
m = calibr	-					<u></u>	40.00 -				A		
b = calibra	-	-	t			nse							
				bration (de	σK)	spo	20.00						
	-		-	ation (mm		r re	30.00			•			
1000 000	and process					cha	40.00						
For subse	equent ca	Iculatio	n of san	npler flow:		tual	20.00 -			/			
1/m((I)[S	-			-		A				•			
1/111((1)[c	9411(290/1	u) (1 u)	//00/] 0	<i>')</i>			10.00						
m = samp	ler slope						10.00						
b = samp	_	pt											
I = chart r		r.					0.00						
T = chart T Tav = dail	-	temper	ature				0.000)			1.500	2.000	
Pav = dail		-			Į				Standard FIO	w Rate (m3/mi			
	,	1											

RECALIBRATION DUE DATE:

December 27, 2022

	Ce	rtifa	Calibration				ntion	
Cal. Date:	December	27 2021		meter S/N:		annan an ann an Adres An Inne Aigeine Inne Station	295	°K
		27, 2021	ROOLS	meter 5/14.	436320			
Operator:	Jim Tisch					Pa:	740.4	mm Hg
Calibration	Model #:	TE-5025A	Cali	brator S/N:	1612			
		Vol. Init	Vol. Final	ΔVol.	ΔTime	ΔΡ	ΔΗ	
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)	
	1	1	2	1	1.3890	3.2	2.00	
	2	3	4	1	0.9760	6.4	4.00	
	3	5	6	1	0.8740	7.9	5.00	
	4	7	8	1	0.8320	8.8	5.50	
	5	9	10	1	0.6870	12.7	8.00	
				Data Tabula	tion			
	Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right)}$)(<u>Tstd</u>)		Qa	√∆H(Ta/Pa)	
	(m3)	(x-axis)	y (y-ax		Va	(x-axis)	(y-axis)	
	0.9799	0.7055	1.40	1	0.9957	0.7168	0.8927	
	0.9756	0.9996	1.98		0.9914	1.0157	1.2624	
	0.9736	1.1140	2.21	1	0.9893	1.1320	1.4114	
	0.9724	1.1688	2.32	65	0.9881	1.1876	1.4803	
	0.9673	1.4079	2.80	1	0.9828	1.4306	1.7853 1.25135	
		m=	1.998			m=		
	QSTD	b=	-0.00		QA	b=	-0.00574	
		r=	0.999	999		r=	0.99999	
			(m	Calculation				
		ΔVol((Pa-ΔP) Vstd/ΔTime	/Pstd)(Tstd/T	a)	Conception of the local division of the loca	ΔVol((Pa-Δ Va/ΔTime	P)/Pa)	
	Q3tu-	vstu/Anne	For subsequ	lent flow ra	te calculation			
	Qstd=	1/m ((\\ \ \ \ \ \ \ \ \ \ \ \ \ (Pa <u>Tstd</u> Pstd Ta	The second s		1/m ((√∆H	l(Ta/Pa))-b)	
		Conditions						I
Tstd:	298.15	°K		Ι		RECA	LIBRATION	
Pstd:	Contraction of the second seco	mm Hg			LIS EPA reco	mmende	nnual recalibratio	n ner 1000
AH: calibrat		(ey ter reading (i	n H2O)				Regulations Part 5	
		eter reading					, Reference Meth	
Ta: actual al	osolute tem	perature (°K)					ended Particulate	
		ressure (mm	Hg)				ere, 9.2.17, page 3	
b: intercept				l			,	
m: slope								

Tisch Environmental, Inc.

145 South Miami Avenue

Village of Cleves, OH 45002

<u>www.tisch-env.com</u> TOLL FREE: (877)263-7610 FAX: (513)467-9005

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CONTACT	: MR BEN TAM	WORK ORDER HK2212657
CLIENT	ACTION-UNITED ENVIRONMENTAL	
	SERVICES & CONSULTING	
ADDRESS	RM A 20/F., GOLD KING IND BLDG, NO. 35-41	SUB-BATCH : 1
	TAI LIN PAI ROAD, KWAI CHUNG, N.T.	DATE RECEIVED : 8-APR-2022
		DATE OF ISSUE : 14-APR-2022
PROJECT	:	NO. OF SAMPLES : 1
		CLIENT ORDER

General Comments

- Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in ambient condition. The result(s) related only to the item(s) tested.
- Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.
- Calibration was subcontracted to and analysed by Action United Environmental Services & Consulting.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories	Position	
Richard Jama .		
Richard Fung	Managing Director	

This is the Final Report and supersedes any preliminary report with this batch number.

All pages of this report have been checked and approved for release.

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F. Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com WORK ORDER SUB-BATCH

CLIENT

PROJECT

: HK2212657

¹ ACTION-UNITED ENVIRONMENTAL SERVICES & CONSULTING : ____

ALS Lab ID	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.
HK2212657-001	S/N: 456658	AIR	08-Apr-2022	S/N: 456658

Equipment Verification Report (TSP)

Equipment Calibrated:

Туре:	Laser Dust monitor
Manufacturer:	Sibata LD-3B
Serial No.	456658
Equipment Ref:	EQ115

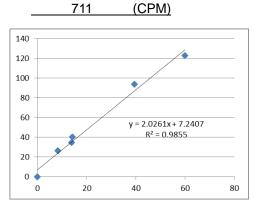
Standard Equipment:

Verification Date:

Standard Equipment:	Higher Volume Sampler (TSP)
Location & Location ID:	AUES office (calibration room)
Equipment Ref:	HVS 018 & HVS 019
Last Calibration Date:	22 February 2022

Equipment Verification Results:

1 & 7 March 2022


Date	Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in ug/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/min)
7-Mar-22	2hr01mins	09:17 ~ 11:18	22.5	1010.6	26.4	1004	8.3
7-Mar-22	2hr01mins	11:24 ~ 13:25	22.5	1010.6	34.8	1674	13.8
7-Mar-22	2hr01mins	13:30 ~ 15:31	22.5	1010.6	40.3	1709	14.2
1-Mar-22	30mins	10:03 ~ 10:33	22	1016.9	123.1	1799	60.0
1-Mar-22	31mins	10:39 ~ 11:10	22	1016.9	93.9	1208	39.5

(*) Suspended particle was added into calibration room of HVS019 for high concentration test.

Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration) 702 (CPM)

Linear Regression of Y or X

Slope (K-factor):2.0261 (µg/m³)/CPMCorrelation Coefficient (R)0.9927Date of Issue26 March 2022

Remarks:

1. **Strong** Correlation (R>0.8)

2. Factor 2.0261 (µg/m³)/CPM should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

Operator :	Fai So	Signature :	Ja	Date :	26 March 2022	
QC Reviewer :	Ben Tam	Signature : _	K	Date :	26 March 2022	

Location :Gold King Industrial Building, Kwai ChungLocation ID :Calibration Room								Calibration: 22-Feb-22 ration Date: 22-May-22		
					COND	ITIONS				
Sea Level Pressure (hPa) 10 Temperature (°C)							Corrected Pressure Temperature			
				CALI	BRAT	ION ORIFICE				
Make-> TIS Model-> 502 Calibration Date-> 27-De							Qstd Slope -> Qstd Intercept -> Expiry Date->	1.99838 -0.00903 27-Dec-22		
				C	CALIB	RATION				
Plate H20 No. (in	(L)H2O (R)) (in)	H20 (in)	Qstd (m3/min)	(ch	I IC art) corrected			LINEAR REGRESSION		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 5.8 7 4.7 5 3.6 3 2.3	11.6 9.4 7.2 4.6 2.8	1.713 1.543 1.351 1.080 0.844	5 4 4 3	4 9 4 7 0	54.13 49.12 44.11 37.09 30.07	Slope = Intercept = Corr. coeff. =	27.3242 7.2177 0.9997		
Calculations : Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] Qstd = standard flow rate IC = corrected chart respones I = actual chart response m = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pstd = actual pressure during calibration (mm Hg) For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope b = sampler intercept					00 90 90 90 90 90 90 90 90 90 90 90 90 9		FLOW RATE CHA	RT		
I = chart response Tav = daily average temperature Pav = daily average pressure						0.000	0.500 1.000 Standard Flow Rate (m:	1.500 2.000 3/min)		

Location : Gold King Industrial Building, Kwai Chung Location ID : Calibration Room							Date of Calibration: 22-Feb-22 Next Calibration Date: 22-May-22	
						COND	ITIONS	
Sea Level Pressure (hPa) 10 Temperature (°C)						1010.8 22.8		Corrected Pressure (mm Hg)758.1Temperature (K)296
					CALI	BRATI	ON ORIFIC	E
						SCH 25A Dec-21		Qstd Slope ->1.99838Qstd Intercept ->-0.00903Expiry Date->27-Dec-22
					C	CALIB	RATION	
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	(ch	I IC nart) corrected		LINEAR REGRESSION
18 13 10 8 5	6.2 4.9 3.8 2.4 1.5	6.2 4.9 3.8 2.4 1.5	12.4 9.8 7.6 4.8 3.0	1.771 1.575 1.387 1.104 0.873	5 4 4 3	2 4 0 0 0	52.13 44.11 40.10 30.07 20.05	Slope = 34.6002 Intercept = -9.1434 Corr. coeff. = 0.9958
Calculations : Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] Qstd = standard flow rate IC = corrected chart respones I = actual chart response m = calibrator Qstd slope b = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pstd = actual pressure during calibration (mm Hg) For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope b = sampler intercept I = chart response						00 905 905 905 905 901 901	.00 .00 .00 .00 .00 .00 .00 .00	FLOW RATE CHART
Tav = dail Pav = dail						L		

RECALIBRATION DUE DATE:

December 27, 2022

	Ce	rtifa	Calibration				ntion	
Cal. Date:	December	27 2021		meter S/N:		annan an ann an Adres An Inne Aigeine Inne Station	295	°K
		27, 2021	ROOLS	meter 5/14.	436320			
Operator:	Jim Tisch					Pa:	740.4	mm Hg
Calibration	Model #:	TE-5025A	Cali	brator S/N:	1612			
		Vol. Init	Vol. Final	ΔVol.	ΔTime	ΔΡ	ΔΗ	
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)	
	1	1	2	1	1.3890	3.2	2.00	
	2	3	4	1	0.9760	6.4	4.00	
	3	5	6	1	0.8740	7.9	5.00	
	4	7	8	1	0.8320	8.8	5.50	
	5	9	10	1	0.6870	12.7	8.00	
				Data Tabula	tion			
	Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right)}$)(<u>Tstd</u>)		Qa	√∆H(Ta/Pa)	
	(m3)	(x-axis)	y (y-ax		Va	(x-axis)	(y-axis)	
	0.9799	0.7055	1.40	1	0.9957	0.7168	0.8927	
	0.9756	0.9996	1.98		0.9914	1.0157	1.2624	
	0.9736	1.1140	2.21	1	0.9893	1.1320	1.4114	
	0.9724	1.1688	2.32	65	0.9881	1.1876	1.4803	
	0.9673	1.4079	2.80	1	0.9828	1.4306	1.7853	
		m=	1.998			m=	1.25135	
	QSTD	b=	-0.00		QA	b= r=	-0.00574 0.99999	
		r=	0.999	999				
			(m	Calculation				
		ΔVol((Pa-ΔP) Vstd/ΔTime	/Pstd)(Tstd/T	a)	Conception of the local division of the loca	ΔVol((Pa-Δ Va/ΔTime	P)/Pa)	
	Q3tu-	vstu/Anne	For subsequ	lent flow ra	te calculation			
	Qstd=	1/m ((\\ \ \ \ \ \ \ \ \ \ \ \ \ (Pa <u>Tstd</u> Pstd Ta	The second s		1/m ((√∆H	l(Ta/Pa))-b)	
		Conditions						I
Tstd:	298.15	°K		Ι		RECA	LIBRATION	
Pstd:	Contraction of the second seco	mm Hg			LIS EPA reco	mmende	nnual recalibratio	n ner 1000
AH: calibrat		(ey ter reading (i	n H2O)				Regulations Part 5	
		eter reading					, Reference Meth	
Ta: actual al	osolute tem	perature (°K)					ended Particulate	
		ressure (mm	Hg)				ere, 9.2.17, page 3	
b: intercept				l			,	
m: slope								

Tisch Environmental, Inc.

145 South Miami Avenue

Village of Cleves, OH 45002

<u>www.tisch-env.com</u> TOLL FREE: (877)263-7610 FAX: (513)467-9005

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

CONTACT	: MR BEN TAM	WORK ORDER HK2212658
CLIENT	ACTION-UNITED ENVIRONMENTAL	
	SERVICES & CONSULTING	
DDRESS	: RM A 20/F., GOLD KING IND BLDG, NO. 35-41	SUB-BATCH : 1
	TAI LIN PAI ROAD, KWAI CHUNG, N.T.	DATE RECEIVED : 8-APR-2022
	- ,,	DATE OF ISSUE : 14-APR-2022
ROJECT	:	NO. OF SAMPLES : 1
		CLIENT ORDER

General Comments

- Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in ambient condition. The result(s) related only to the item(s) tested.
- Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.
- Calibration was subcontracted to and analysed by Action United Environmental Services & Consulting.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories	Position	
Ki hard Jong .		
Richard Fung	Managing Director	

This is the Final Report and supersedes any preliminary report with this batch number.

All pages of this report have been checked and approved for release.

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F. Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com WORK ORDER SUB-BATCH

CLIENT

PROJECT

: HK2212658

¹ ACTION-UNITED ENVIRONMENTAL SERVICES & CONSULTING :

ALS Lab ID	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.
HK2212658-001	S/N: 456659	AIR	08-Apr-2022	S/N: 456659

Equipment Verification Report (TSP)

Equipment Calibrated:

Туре:	Laser Dust monitor
Manufacturer:	Sibata LD-3B
Serial No.	456659
Equipment Ref:	EQ116

Standard Equipment:

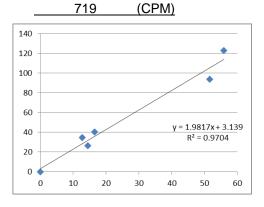
Verification Date:

Standard Equipment:	Higher Volume Sampler (TSP)
Location & Location ID:	AUES office (calibration room)
Equipment Ref:	HVS 018 & HVS 019
Last Calibration Date:	22 February 2022

Equipment Verification Results:

1 & 7 March 2022

Date	Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in ug/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/min)
7-Mar-22	2hr01mins	09:17 ~ 11:18	22.5	1010.6	26.4	1742	14.4
7-Mar-22	2hr01mins	11:24 ~ 13:25	22.5	1010.6	34.8	1547	12.8
7-Mar-22	2hr01mins	13:30 ~ 15:31	22.5	1010.6	40.3	1994	16.5
1-Mar-22	30mins	10:03 ~ 10:33	22	1016.9	123.1	1677	55.9
1-Mar-22	31mins	10:39 ~ 11:10	22	1016.9	93.9	1578	51.6


(*) Suspended particle was added into calibration room of HVS019 for high concentration test.

Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration) 726 (CPM)

Linear Regression of Y or X

Slope (K-factor): _____ Correlation Coefficient (R) ____

<u>1.9817 (μg/m³)/CPM</u> 0.9851 26 March 2022

Remarks:

Date of Issue

1. **Strong** Correlation (R>0.8)

2. Factor 1.9817 (µg/m³)/CPM should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

Operator :	Fai So	Signature :	Ja	Date :	26 March 2022	
QC Reviewer :	Ben Tam	Signature :	-	Date :	26 March 2022	

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location : Location ID :	Gold Ki Calibrat	-		Calibration: 22-Feb-22 ration Date: 22-May-22				
					COND	ITIONS		
	Sea Level I Temp	Pressure erature	. ,	1	010.8 22.8		Corrected Pressure Temperature	
				CALI	BRAT	ION ORIFICE		
		Calibrat	Make-> Model-> ion Date->	TIS 502 27-D	25A		Qstd Slope -> Qstd Intercept -> Expiry Date->	1.99838 -0.00903 27-Dec-22
				C	CALIB	RATION		
	0 (L)H2O (R) in) (in)	H20 (in)	Qstd (m3/min)	(ch	[art)	IC corrected	LINE REGRE	
18 5 13 4 10 3 8 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11.6 9.4 7.2 4.6 2.8	1.713 1.543 1.351 1.080 0.844	5 4 4 3	4	54.13 49.12 44.11 37.09 30.07	Slope = Intercept = Corr. coeff. =	27.3242 7.2177 0.9997
Calculations : Qstd = $1/m[Sc]$ IC = I[Sqrt(Pa Qstd = standar IC = corrected I = actual char m = calibrator b = calibrator Ta = actual ten Pstd = actual ten For subsequent 1/m((I)[Sqrt(m = sampler starts)]	grt(H20(Pa/Ps d/Pstd)(Tstd/T rd flow rate d chart response c Qstd slope Qstd intercep mperature dur pressure durin cat calculation (298/Tav)(Pav slope	a)] es t ting calil g calibra n of sam	bration (de ation (mm		00 90 90 90 90 90 90 90 90 90 90 90 90 9		FLOW RATE CHA	RT
I = chart respo Tav = daily av Pav = daily av	verage temper					0.000	0.500 1.000 Standard Flow Rate (m	1.500 2.000 3/min)

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location : Gold King Industrial Building, Kwai Chung Location ID : Calibration Room								Date of Calibration: 22-Feb-22 Next Calibration Date: 22-May-22
						COND	ITIONS	
	Se	a Level I Temp	Pressure erature	` ´	1	010.8 22.8		Corrected Pressure (mm Hg)758.1Temperature (K)296
					CALI	BRATI	ON ORIFICE	E
Make-> TIS Model-> 502 Calibration Date-> 27-De						25A		Qstd Slope -> 1.99838 Qstd Intercept -> -0.00903 Expiry Date-> 27-Dec-22
					C	CALIB	RATION	
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	(ch	[art)	IC corrected	LINEAR REGRESSION
18 13 10 8 5	6.2 4.9 3.8 2.4 1.5	6.2 4.9 3.8 2.4 1.5	12.4 9.8 7.6 4.8 3.0	1.771 1.575 1.387 1.104 0.873	5 4 4 3	2 4 0 0 0	52.13 44.11 40.10 30.07 20.05	Slope = 34.6002 Intercept = -9.1434 Corr. coeff. = 0.9958
	n[Sqrt(H t(Pa/Psto ndard flo cted cha chart res ator Qsto ator Qsto il temper ual press	d)(Tstd/T ow rate rt respon ponse d slope l intercep rature dur ure durin	a)] es t ing cali g calibr n of sam	bration (de ation (mm		Actual chart response (IC) 07 07 07 07	.00	FLOW RATE CHART
m = sampl b = sampl I = chart r Tav = dail Pav = dail	ler interc esponse y averag	e temper				0	.00 .000	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

RECALIBRATION DUE DATE:

December 27, 2022

	Ce	rtifa	Calibration				ntion	
Cal. Date:	December	27 2021		meter S/N:		annan an ann an Adres An Inne Aigeine Inne Station	295	°K
		27, 2021	ROOLS	meter 5/14.	436320			
Operator:	Jim Tisch					Pa:	740.4	mm Hg
Calibration	Model #:	TE-5025A	Cali	brator S/N:	1612			
		Vol. Init	Vol. Final	ΔVol.	ΔTime	ΔΡ	ΔΗ	
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)	
	1	1	2	1	1.3890	3.2	2.00	
	2	3	4	1	0.9760	6.4	4.00	
	3	5	6	1	0.8740	7.9	5.00	
	4	7	8	1	0.8320	8.8	5.50	
	5	9	10	1	0.6870	12.7	8.00	
				Data Tabula	tion			
	Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right)}$)(<u>Tstd</u>)		Qa	√∆H(Ta/Pa)	
	(m3)	(x-axis)	y (y-ax		Va	(x-axis)	(y-axis)	
	0.9799	0.7055	1.40	1	0.9957	0.7168	0.8927	
	0.9756	0.9996	1.98		0.9914	1.0157	1.2624	
	0.9736	1.1140	2.21	1	0.9893	1.1320	1.4114	
	0.9724	1.1688	2.32	65	0.9881	1.1876	1.4803	
	0.9673	1.4079	2.80	1	0.9828	1.4306	1.7853	
		m=	1.998			m=	1.25135	
	QSTD	b=	-0.00		QA	b= r=	-0.00574 0.99999	
		r=	0.999	999				
			(m	Calculation				
		ΔVol((Pa-ΔP) Vstd/ΔTime	/Pstd)(Tstd/T	a)	Conception of the local division of the loca	ΔVol((Pa-Δ Va/ΔTime	P)/Pa)	
	Q3tu-	vstu/Anne	For subsequ	lent flow ra	te calculation			
	Qstd=	1/m ((\\ \ \ \ \ \ \ \ \ \ \ \ \ (Pa <u>Tstd</u> Pstd Ta	The second s		1/m ((√∆H	l(Ta/Pa))-b)	
		Conditions						I
Tstd:	298.15	°K		Ι		RECA	LIBRATION	
Pstd:	Contraction of the second seco	mm Hg			LIS EPA reco	mmende	nnual recalibratio	n ner 1000
AH: calibrat		(ey ter reading (i	n H2O)				Regulations Part 5	
		eter reading					, Reference Meth	
Ta: actual al	osolute tem	perature (°K)					ended Particulate	
		ressure (mm	Hg)				ere, 9.2.17, page 3	
b: intercept				l			,	
m: slope								

Tisch Environmental, Inc.

145 South Miami Avenue

Village of Cleves, OH 45002

<u>www.tisch-env.com</u> TOLL FREE: (877)263-7610 FAX: (513)467-9005

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

CONTACT	: MR BEN TAM	WORK ORDER HK2212660
CLIENT	: ACTION-UNITED ENVIRONMENTAL	
	SERVICES & CONSULTING	
ADDRESS	: RM A 20/F., GOLD KING IND BLDG, NO. 35-41	SUB-BATCH : 1
	TAI LIN PAI ROAD, KWAI CHUNG, N.T.	DATE RECEIVED : 8-APR-2022
		DATE OF ISSUE : 14-APR-2022
PROJECT	:	NO. OF SAMPLES : 1
		CLIENT ORDER

General Comments

- Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in ambient condition. The result(s) related only to the item(s) tested.
- Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.
- Calibration was subcontracted to and analysed by Action United Environmental Services & Consulting.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories	Position	
Ki hard Jong .		
Richard Fung	Managing Director	

This is the Final Report and supersedes any preliminary report with this batch number.

All pages of this report have been checked and approved for release.

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F. Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com WORK ORDER SUB-BATCH

CLIENT

PROJECT

: HK2212660

¹ ACTION-UNITED ENVIRONMENTAL SERVICES & CONSULTING :

ALS Lab ID	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.
HK2212660-001	S/N: 456660	AIR	08-Apr-2022	S/N: 456660

Equipment Verification Report (TSP)

Equipment Calibrated:

Туре:	Laser Dust monitor
Manufacturer:	Sibata LD-3B
Serial No.	456660
Equipment Ref:	EQ117

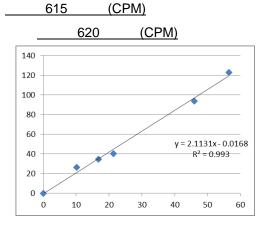
Standard Equipment:

Verification Date:

Standard Equipment:	Higher Volume Sampler (TSP)				
Location & Location ID:	AUES office (calibration room)				
Equipment Ref:	HVS 018 & HVS 019				
Last Calibration Date:	22 February 2022				

Equipment Verification Results:

1 & 7 March 2022


Date	Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in ug/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/min)
7-Mar-22	2hr01mins	09:17 ~ 11:18	22.5	1010.6	26.4	1220	10.1
7-Mar-22	2hr01mins	11:24 ~ 13:25	22.5	1010.6	34.8	2041	16.8
7-Mar-22	2hr01mins	13:30 ~ 15:31	22.5	1010.6	40.3	2577	21.4
1-Mar-22	30mins	10:03 ~ 10:33	22	1016.9	123.1	1694	56.5
1-Mar-22	31mins	10:39 ~ 11:10	22	1016.9	93.9	1407	46.0

(*) Suspended particle was added into calibration room of HVS019 for high concentration test.

Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration)

Linear Regression of Y or X

Slope (K-factor):2.1131 (µg/m³)/CPMCorrelation Coefficient (R)0.9965Date of Issue26 March 2022

Remarks:

1. **Strong** Correlation (R>0.8)

2. Factor 2.1131 (µg/m³)/CPM should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

Operator :	Fai So	Signature :	Ja	Date :	26 March 2022
QC Reviewer :	Ben Tam	Signature :		Date :	26 March 2022

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location : Gold King Industrial Building, Kwai Chung Location ID : Calibration Room								Calibration: 22-Feb-22 ration Date: 22-May-22
					COND	ITIONS		
Sea Level Pressure (hPa) 1 Temperature (°C)							Corrected Pressure Temperature	
				CALI	BRAT	ION ORIFICE		
Make-> TIS Model-> 502 Calibration Date-> 27-De							Qstd Slope -> Qstd Intercept -> Expiry Date->	1.99838 -0.00903 27-Dec-22
				C	CALIB	RATION		
	0 (L)H2O (R) in) (in)	H20 (in)	Qstd (m3/min)	(ch	[art)	IC corrected	LINE REGRE	
18 5 13 4 10 3 8 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11.6 9.4 7.2 4.6 2.8	1.713 1.543 1.351 1.080 0.844	5 4 4 3	4	54.13 49.12 44.11 37.09 30.07	Slope = Intercept = Corr. coeff. =	27.3242 7.2177 0.9997
Calculations : Qstd = $1/m[Sc]$ IC = I[Sqrt(Pa Qstd = standar IC = corrected I = actual char m = calibrator b = calibrator Ta = actual ten Pstd = actual ten For subsequent 1/m((I)[Sqrt(m = sampler starts)]	grt(H20(Pa/Ps d/Pstd)(Tstd/T rd flow rate d chart response c Qstd slope Qstd intercep mperature dur pressure durin cat calculation (298/Tav)(Pav slope	a)] es t ting calil g calibra n of sam	bration (de ation (mm		00 90 90 90 90 90 90 90 90 90 90 90 90 9		FLOW RATE CHA	RT
I = chart respo Tav = daily av Pav = daily av	verage temper					0.000	0.500 1.000 Standard Flow Rate (m	1.500 2.000 3/min)

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location :Gold King Industrial Building, Kwai ChungLocation ID :Calibration Room							Date of Calibration: 22-Feb-22 Next Calibration Date: 22-May-22	
						COND	ITIONS	
Sea Level Pressure (hPa) 10 Temperature (°C)						<u>010.8</u> 22.8		Corrected Pressure (mm Hg)758.1Temperature (K)296
					CALI	BRATI	ON ORIFICE	E
Make-> TIS Model-> 502 Calibration Date-> 27-De						25A		Qstd Slope -> 1.99838 Qstd Intercept -> -0.00903 Expiry Date-> 27-Dec-22
					C	CALIB	RATION	
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	(ch	[art)	IC corrected	LINEAR REGRESSION
18 13 10 8 5	6.2 4.9 3.8 2.4 1.5	6.2 4.9 3.8 2.4 1.5	12.4 9.8 7.6 4.8 3.0	1.771 1.575 1.387 1.104 0.873	5 4 4 3	2 4 0 0 0	52.13 44.11 40.10 30.07 20.05	Slope = 34.6002 Intercept = -9.1434 Corr. coeff. = 0.9958
	n[Sqrt(H t(Pa/Psto ndard flo cted cha chart res ator Qsto ator Qsto il temper ual press	d)(Tstd/T ow rate rt respon ponse d slope l intercep rature dur ure durin	a)] es t ing cali g calibr n of sam	bration (de ation (mm		Actual chart response (IC) 07 07 07 07	.00	FLOW RATE CHART
m = sampl b = sampl I = chart r Tav = dail Pav = dail	ler interc esponse y averag	e temper				0	.00 .000	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

RECALIBRATION DUE DATE:

December 27, 2022

	Ce	rtifa	Calibration				ntion	
Cal. Date:	December	27 2021		meter S/N:		annan an ann an Adres An Inne Aigeine Inne Station	295	°K
		27, 2021	ROOLS	meter 5/14.	436320			
Operator:	Jim Tisch					Pa:	740.4	mm Hg
Calibration	Model #:	TE-5025A	Cali	brator S/N:	1612			
		Vol. Init	Vol. Final	ΔVol.	ΔTime	ΔΡ	ΔΗ	
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)	
	1	1	2	1	1.3890	3.2	2.00	
	2	3	4	1	0.9760	6.4	4.00	
	3	5	6	1	0.8740	7.9	5.00	
	4	7	8	1	0.8320	8.8	5.50	
	5	9	10	1	0.6870	12.7	8.00	
				Data Tabula	tion			
	Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right)}$)(Tstd)		Qa	√∆H(Ta/Pa)	
	(m3)	(x-axis)	y (y-ax		Va	(x-axis)	(y-axis)	
	0.9799	0.7055	1.40	1	0.9957	0.7168	0.8927	
	0.9756	0.9996	1.98		0.9914	1.0157	1.2624	
	0.9736	1.1140	2.21	1	0.9893	1.1320	1.4114	
	0.9724	1.1688	2.32	65	0.9881	1.1876	1.4803	
	0.9673	1.4079	2.80	1	0.9828	1.4306	1.7853	
		m=	1.998			m=	1.25135	
	QSTD	b=	-0.00		QA	b=	-0.00574	
		r=	0.999	999		r=	0.99999	
			(m	Calculation				
		ΔVol((Pa-ΔP) Vstd/ΔTime	/Pstd)(Tstd/T	a)	Va=			
	Q3tu-	vstu/Anne	For subsequ	lent flow ra	te calculation	Va/ATime		
	Qstd=	1/m ((\\ \ \ \ \ \ \ \ \ \ \ \ \ (Pa <u>Tstd</u> Pstd Ta	The second s		1/m ((√∆H	l(Ta/Pa))-b)	
		Conditions						I
Tstd:	298.15	°K		Ι		RECA	LIBRATION	
Pstd:	Contraction of the second seco	mm Hg			LIS EPA reco	mmende	nnual recalibratio	n ner 1000
AH: calibrat		(ey ter reading (i	n H2O)				Regulations Part 5	
		eter reading					, Reference Meth	
Ta: actual al	osolute tem	perature (°K)					ended Particulate	
		ressure (mm	Hg)				ere, 9.2.17, page 3	
b: intercept				l			,	
m: slope								

Tisch Environmental, Inc.

145 South Miami Avenue

Village of Cleves, OH 45002

<u>www.tisch-env.com</u> TOLL FREE: (877)263-7610 FAX: (513)467-9005

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

CONTACT	: MR BEN TAM	WORK ORDER HK2212661
CLIENT	: ACTION-UNITED ENVIRONMENTAL	
	SERVICES & CONSULTING	
ADDRESS	: RM A 20/F., GOLD KING IND BLDG, NO. 35-41	SUB-BATCH : 1
	TAI LIN PAI ROAD, KWAI CHUNG, N.T.	DATE RECEIVED : 8-APR-2022
	- , ,	DATE OF ISSUE : 14-APR-2022
PROJECT	:	NO. OF SAMPLES : 1
		CLIENT ORDER +

General Comments

- Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in ambient condition. The result(s) related only to the item(s) tested.
- Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.
- Calibration was subcontracted to and analysed by Action United Environmental Services & Consulting.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories	Position	
Ki hard Jong .		
Richard Fung	Managing Director	

This is the Final Report and supersedes any preliminary report with this batch number.

All pages of this report have been checked and approved for release.

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F. Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com WORK ORDER SUB-BATCH

CLIENT

PROJECT

: HK2212661

¹ ACTION-UNITED ENVIRONMENTAL SERVICES & CONSULTING : ----

ALS Lab ID	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.
HK2212661-001	S/N: 456662	AIR	08-Apr-2022	S/N: 456662

Equipment Verification Report (TSP)

Equipment Calibrated:

Туре:	Laser Dust monitor
Manufacturer:	Sibata LD-3B
Serial No.	456662
Equipment Ref:	EQ118

Standard Equipment:

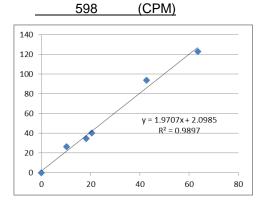
Verification Date:

Standard Equipment:	Higher Volume Sampler (TSP)
Location & Location ID:	AUES office (calibration room)
Equipment Ref:	HVS 018 & HVS 019
Last Calibration Date:	22 February 2022

Equipment Verification Results:

1 & 7 March 2022

Date	Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in ug/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/min)
7-Mar-22	2hr01mins	09:17 ~ 11:18	22.5	1010.6	26.4	1234	10.2
7-Mar-22	2hr01mins	11:24 ~ 13:25	22.5	1010.6	34.8	2207	18.2
7-Mar-22	2hr01mins	13:30 ~ 15:31	22.5	1010.6	40.3	2477	20.5
1-Mar-22	30mins	10:03 ~ 10:33	22	1016.9	123.1	1904	63.5
1-Mar-22	31mins	10:39 ~ 11:10	22	1016.9	93.9	1309	42.8


(*) Suspended particle was added into calibration room of HVS019 for high concentration test.

Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration) 591 (CPM)

Linear Regression of Y or X

Slope (K-factor): Correlation Coefficient (R)

<u>1.9707 (µg/m³)/CPM</u> 0.9948 26 March 2022

Remarks:

Date of Issue

1. **Strong** Correlation (R>0.8)

2. Factor 1.9707 (µg/m³)/CPM should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

Operator :	Fai So	Signature :	Ja	Date :	26 March 2022	
QC Reviewer : _	Ben Tam	Signature :	-	Date :	26 March 2022	

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location : Location ID :	Gold Ki Calibrat	-		Calibration: 22-Feb-22 ration Date: 22-May-22				
					COND	ITIONS		
	Sea Level I Temp	Pressure erature	· /	1	010.8 22.8		Corrected Pressure Temperature	
				CALI	BRAT	ION ORIFICE		
		Calibrat	Make-> Model-> ion Date->	TIS 502 27-D	25A		Qstd Slope -> Qstd Intercept -> Expiry Date->	1.99838 -0.00903 27-Dec-22
				C	CALIB	RATION		
	0 (L)H2O (R) in) (in)	H20 (in)	Qstd (m3/min)	(ch	[art)	IC corrected	LINE REGRE	
18 5 13 4 10 3 8 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11.6 9.4 7.2 4.6 2.8	1.713 1.543 1.351 1.080 0.844	5 4 4 3	4	54.13 49.12 44.11 37.09 30.07	Slope = Intercept = Corr. coeff. =	27.3242 7.2177 0.9997
Calculations : Qstd = $1/m[Sc]$ IC = I[Sqrt(Pa Qstd = standar IC = corrected I = actual char m = calibrator b = calibrator Ta = actual ten Pstd = actual ten For subsequent 1/m((I)[Sqrt(m = sampler starts)]	grt(H20(Pa/Ps d/Pstd)(Tstd/T rd flow rate d chart response c Qstd slope Qstd intercep mperature dur pressure durin cat calculation (298/Tav)(Pav slope	a)] es t ting calil g calibra n of sam	bration (de ation (mm		00 90 90 90 90 90 90 90 90 90 90 90 90 9		FLOW RATE CHA	RT
Tav = daily av	I = chart response Tav = daily average temperature Pav = daily average pressure						0.500 1.000 Standard Flow Rate (m	1.500 2.000 3/min)

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location :Gold King Industrial Building, Kwai ChungLocation ID :Calibration Room								Date of Calibration: 22-Feb-22 Next Calibration Date: 22-May-22
						COND	ITIONS	
Sea Level Pressure (hPa) 1 Temperature (°C)								Corrected Pressure (mm Hg)758.1Temperature (K)296
					CALI	BRATI	ON ORIFICE	E
			Calibrat	Make-> Model-> ion Date->	TIS 502 27-D	25A		Qstd Slope -> 1.99838 Qstd Intercept -> -0.00903 Expiry Date-> 27-Dec-22
					C	CALIB	RATION	
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	(ch	[art)	IC corrected	LINEAR REGRESSION
18 13 10 8 5	6.2 4.9 3.8 2.4 1.5	6.2 4.9 3.8 2.4 1.5	12.4 9.8 7.6 4.8 3.0	1.771 1.575 1.387 1.104 0.873	5 4 4 3	2 4 0 0 0	52.13 44.11 40.10 30.07 20.05	Slope = 34.6002 Intercept = -9.1434 Corr. coeff. = 0.9958
	n[Sqrt(H t(Pa/Psto ndard flo cted cha chart res ator Qsto ator Qsto il temper ual press	d)(Tstd/T ow rate rt respon ponse d slope l intercep rature dur ure durin	a)] es t ing cali g calibr n of sam	bration (de ation (mm		Actual chart response (IC) 07 07 07 07	.00	FLOW RATE CHART
m = sampl b = sampl I = chart r Tav = dail Pav = dail	ler interc esponse y averag	e temper				0	.00 .000	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

RECALIBRATION DUE DATE:

December 27, 2022

	Ce	rtifa	Calibration				ntion			
Calibration Certification Information Cal. Date: December 27, 2021 Rootsmeter S/N: 438320 Ta: 295 °K										
		27, 2021	ROOLS	meter 5/14.	436320					
Operator:	Jim Tisch					Pa:	740.4	mm Hg		
Calibration	Model #:	TE-5025A	Cali	brator S/N:	1612					
		Vol. Init	Vol. Final	ΔVol.	ΔTime	ΔΡ	ΔΗ			
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)			
	1	1	2	1	1.3890	3.2	2.00			
	2	3	4	1	0.9760	6.4	4.00			
	3	5	6	1	0.8740	7.9	5.00			
	4	7	8	1	0.8320	8.8	5.50			
	5	9	10	1	0.6870	12.7	8.00			
				Data Tabula	tion					
	Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right)}$)(Tstd)		Qa	√∆H(Ta/Pa)			
	(m3)	(x-axis)	y (y-ax		Va	(x-axis)	(y-axis)			
	0.9799	0.7055	1.40	1	0.9957	0.7168	0.8927			
	0.9756	0.9996	1.98		0.9914	1.0157	1.2624			
	0.9736	1.1140	2.21	1	0.9893	1.1320	1.4114			
	0.9724	1.1688	2.32	65	0.9881	1.1876	1.4803			
	0.9673	1.4079	2.80	1	0.9828	1.4306	1.7853			
		m=	1.998			m=	1.25135			
	QSTD	b=	-0.00		QA	b=				
		r=	0.999	999		r=	0.99999			
			(m	Calculation						
		ΔVol((Pa-ΔP) Vstd/ΔTime	/Pstd)(Tstd/T	a)	Conception of the local division of the loca	ΔVol((Pa-Δ Va/ΔTime	P)/Pa)			
	Q3tu-	vstu/Anne	For subsequ	lent flow ra	te calculation					
	Qstd=	1/m ((\\ \ \ \ \ \ \ \ \ \ \ \ \ (Pa <u>Tstd</u> Pstd Ta	The second s		1/m ((√∆H	l(Ta/Pa))-b)			
		Conditions						I		
Tstd:	298.15	°K		Ι		RECA	LIBRATION			
Pstd:	Contraction of the second seco	mm Hg			LIS EPA reco	mmende	nnual recalibratio	n ner 1000		
AH: calibrat		(ey ter reading (i	n H2O)				Regulations Part 5			
		eter reading					, Reference Meth			
Ta: actual al	osolute tem	perature (°K)					ended Particulate			
		ressure (mm	Hg)				ere, 9.2.17, page 3			
b: intercept				l			,			
m: slope										

Tisch Environmental, Inc.

145 South Miami Avenue

Village of Cleves, OH 45002

<u>www.tisch-env.com</u> TOLL FREE: (877)263-7610 FAX: (513)467-9005

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C221363 證書編號

ITEM TESTED / 送檢項目		(Job No. / 序引編號:IC22-0258)	Date of Receipt / 收件日期: 14 February 2022
Description / 儀器名稱	:	Sound Level Meter (EQ067)	
Manufacturer / 製造商	:	Rion	
Model No. / 型號	:	NL-31	
Serial No. / 編號	:	00410221	
Supplied By / 委託者	:	Action-United Environmental Services an	nd Consulting
		Unit A, 20/F., Gold King Industrial Build	ling,
		35-41 Tai Lin Pai Road, Kwai Chung, N.	Т.

TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 : --- Relative Humidity / 相對濕度 : (50±25)%

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 : 12 March 2022

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Fluke Everett Service Center, USA
- Agilent Technologies / Keysight Technologies

Tested By 測試	: K C Lee Engineer			
Certified By 核證	: <u>thm thm</u> <u>C</u> H C Chan Engineer	Date of Issue 簽發日期	:	16 March 2022

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C221363 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration was performed before the test.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

<u>Equipment ID</u>	<u>Description</u>	<u>Certificate No.</u>
CL280	40 MHz Arbitrary Waveform Generator	C220381
CL281	Multifunction Acoustic Calibrator	AV210017

- 5. Test procedure : MA101N.
- 6. Results :
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level

	UU	JT Setting		Applied	Value	UUT	IEC 61672 Class 1
Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
30 - 120	L _A	А	Fast	94.00	1	93.8	± 1.1

6.1.2 Linearity

	UI	JT Setting		Applied	Value	UUT
Range	Mode	Frequency	Time	Level	Freq.	Reading
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)
30 - 120	L _A	А	Fast	94.00	1	93.8 (Ref.)
				104.00		103.8
				114.00		113.7

IEC 61672 Class 1 Spec. : \pm 0.6 dB per 10 dB step and \pm 1.1 dB for overall different.

6.2 Time Weighting

	UU	T Setting		Applied	l Value	UUT	IEC 61672 Class 1
Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
30 - 120	L _A	А	Fast	94.00	1	93.8	Ref.
			Slow			93.7	± 0.3

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

輝創工程有限公司

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C221363 證書編號

6.3 Frequency Weighting

6.3.1 A-Weighting

		T Setting		Appl	ied Value	UUT	IEC 61672 Class 1
Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)
30 - 120	L _A	А	Fast	94.00	63 Hz	67.5	-26.2 ± 1.5
					125 Hz	77.6	-16.1 ± 1.5
	<				250 Hz	85.1	-8.6 ± 1.4
				ь. Э	500 Hz	90.5	-3.2 ± 1.4
					1 kHz	93.8	Ref.
					2 kHz	95.0	$+1.2 \pm 1.6$
					4 kHz	94.9	$+1.0 \pm 1.6$
					8 kHz	92.7	-1.1 (+2.1 ; -3.1)
					16 kHz	87.4	-6.6 (+3.5 ; -17.0)

6.3.2 C-Weighting

		T Setting		Appl	ied Value	UUT	IEC 61672 Class 1
Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)
30 - 120	L _C	С	Fast	94.00	63 Hz	92.8	$\textbf{-0.8} \pm 1.5$
					125 Hz	93.5	-0.2 ± 1.5
					250 Hz	93.7	0.0 ± 1.4
					500 Hz	93.8	0.0 ± 1.4
					1 kHz	93.7	Ref.
					2 kHz	93.6	-0.2 ± 1.6
					4 kHz	93.1	$\textbf{-0.8} \pm 1.6$
					8 kHz	90.8	-3.0 (+2.1 ; -3.1)
					16 kHz	85.4	-8.5 (+3.5 ; -17.0)

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Certificate of Calibration 校正證書

Certificate No. : C221363 證書編號

Remarks : - UUT Microphone Model No. : UC-53A & S/N : 322551

- Mfr's Spec. : IEC 61672 Class 1

				~
- Uncertainties of Applied Value :	94 dB	: 63 Hz - 125 Hz	:	$\pm 0.35 \text{ dB}$
		250 Hz - 500 Hz	:	$\pm 0.30 \text{ dB}$
		1 kHz	:	$\pm 0.20 \text{ dB}$
		2 kHz - 4 kHz	:	$\pm \ 0.35 \ dB$
		8 kHz	:	$\pm 0.45 \ dB$
		16 kHz	:	$\pm 0.70 \text{ dB}$
	104 dB	: 1 kHz	;	± 0.10 dB (Ref. 94 dB)
	114 dB	: 1 kHz	:	\pm 0.10 dB (Ref. 94 dB)

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C221364 證書編號

ITEM TESTED / 送檢項目	(Job No. / 序引編號: IC22-0258) Date of Receipt / 收件日期: 14 February 2022
Description / 儀器名稱 :	Sound Level Meter (EQ068)
Manufacturer / 製造商 :	Rion
Model No. / 型號 :	NL-31
Serial No. / 編號 :	00410247
Supplied By / 委託者 :	Action-United Environmental Services and Consulting
	Unit A, 20/F., Gold King Industrial Building,
	35-41 Tai Lin Pai Road, Kwai Chung, N.T.

TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 : --- Relative Humidity / 相對濕度 : (50 ± 25)%

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 : 12 March 2022

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Fluke Everett Service Center, USA
- Agilent Technologies / Keysight Technologies

Tested By 測試	:	K C Lee Engineer				
Certified By 核證	:(l	hm Um C H C Chan Engineer	l.	Date of Issue 簽發日期	:	16 March 2022

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Certificate of Calibration 校正證書

Certificate No. : C221364 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration was performed before the test.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

<u>Equipment ID</u>	<u>Description</u>	<u>Certificate No.</u>
CL280	40 MHz Arbitrary Waveform Generator	C220381
CL281	Multifunction Acoustic Calibrator	AV210017

- 5. Test procedure : MA101N.
- 6. Results :
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level

	UU	JT Setting		Applied	Value	UUT	IEC 61672 Class 1
Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
30 - 120	L _A	А	Fast	94.00	1	93.8	± 1.1

6.1.2 Linearity

	UU	JT Setting		Applied	Value	UUT
Range	Range Mode Frequency Time				Freq.	Reading
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)
30 - 120			Fast	94.00	1	93.8 (Ref.)
				104.00		103.8
				114.00		113.8

IEC 61672 Class 1 Spec. : \pm 0.6 dB per 10 dB step and \pm 1.1 dB for overall different.

6.2 Time Weighting

	UU	T Setting		Applied	Value	UUT	IEC 61672 Class 1
Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
30 - 120	L _A	A	Fast	94.00	1	93.8	Ref.
			Slow			93.8	± 0.3

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

輝創工程有限公司

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C221364 證書編號

6.3 Frequency Weighting

6.3.1 A-Weighting

			T Setting		Appl	ied Value	UUT	IEC 61672 Class 1
	Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.
L	(dB)		Weighting	Weighting	(dB)		(dB)	(dB)
	30 - 120	L _A	А	Fast	94.00	63 Hz	67.5	-26.2 ± 1.5
			-			125 Hz	77.6	-16.1 ± 1.5
						250 Hz	85.1	-8.6 ± 1.4
						500 Hz	90.5	-3.2 ± 1.4
						1 kHz	93.8	Ref.
	с. 					2 kHz	95.1	$+1.2 \pm 1.6$
						4 kHz	94.9	$+1.0 \pm 1.6$
						8 kHz	92.8	-1.1 (+2.1 ; -3.1)
						16 kHz	87.4	-6.6 (+3.5 ; -17.0)

6.3.2 C-Weighting

	UU	T Setting		Applied Value		UUT	IEC 61672 Class 1
Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)
30 - 120	L _C	С	Fast	94.00	63 Hz	92.9	-0.8 ± 1.5
					125 Hz	93.6	-0.2 ± 1.5
					250 Hz	93.8	0.0 ± 1.4
					500 Hz	93.8	0.0 ± 1.4
					1 kHz	93.8	Ref.
					2 kHz	93.7	-0.2 ± 1.6
					4 kHz	93.1	-0.8 ± 1.6
					8 kHz	90.9	-3.0 (+2.1 ; -3.1)
					16 kHz	85.4	-8.5 (+3.5 ; -17.0)

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Certificate of Calibration 校正證書

Certificate No. : C221364 證書編號

Remarks : - UUT Microphone Model No. : UC-53A & S/N : 322738

- Mfr's Spec. : IEC 61672 Class 1

- Uncertainties of Applied Value : 9	94 dB	: 63 Hz - 125 Hz	:	$\pm 0.35 \text{ dB}$
		250 Hz - 500 Hz	:	$\pm 0.30 \text{ dB}$
		1 kHz	:	$\pm 0.20 \text{ dB}$
		2 kHz - 4 kHz	;	$\pm 0.35 \ dB$
		8 kHz	:	$\pm \ 0.45 \ dB$
		16 kHz	:	$\pm 0.70 \text{ dB}$
	104 dB	: 1 kHz	;	± 0.10 dB (Ref. 94 dB)
	114 dB	: 1 kHz	:	\pm 0.10 dB (Ref. 94 dB)

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

輝創工程有限公司

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C221362 證書編號

ITEM TESTED / 送檢共	頁目	(Job No. / 序引編號:IC22-0258)	Date of Receipt / 收件日期: 14 February 2022
Description / 儀器名稱	:	Sound Calibrator (EQ089)	
Manufacturer / 製造商	:	Rion	
Model No. / 型號	:	NC-75	8
Serial No. / 編號	:	34680623	
Supplied By / 委託者	:	Action-United Environmental Services a	and Consulting
		Unit A, 20/F., Gold King Industrial Buil	lding,
		35-41 Tai Lin Pai Road, Kwai Chung, N	J.T.
Serial No. / 編號	:	34680623 Action-United Environmental Services a Unit A, 20/F., Gold King Industrial Buil	lding,

TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 : --- Relative Humidity / 相對濕度 : (50 ± 25)%

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 : 12 March 2022

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

- Fluke Everett Service Center, USA
- Agilent Technologies / Keysight Technologies

Tested By 測試	K C Lee Engineer			
Certified By 核證	: <u>Chur Chan</u> H C Chan Engineer	Date of Issue 簽發日期	:	16 March 2022

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

輝創工程有限公司

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C221362 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

Equipment ID CL130 CL281 TST150A

Description Universal Counter Multifunction Acoustic Calibrator Measuring Amplifier <u>Certificate No.</u> C213954 AV210017 C201309

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy

UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value
Nominal Value	(dB)	(dB)	(dB)
94 dB, 1 kHz	94.0	± 0.25	± 0.2

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.000 0	$1 \text{ kHz} \pm 0.1 \%$	± 0.1

Remark : The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Hong Kong Accreditation Service 香港認可處

Certificate of Accreditation

認可證書

This is to certify that 特此證明

ALS TECHNICHEM (HK) PTY LIMITED

11/F, Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, New Territories, Hong Kong 香港新界葵涌永業街1-3號忠信針織中心11樓

is accredited by the Hong Kong Accreditation Service (HKAS) to ISO/IEC 17025:2017 for performing specific laboratory activities as listed in the scope of accreditation within the test category of 獲香港認可處根據ISO/IEC 17025:2017認可 進行載於認可範圍內下述測試類別中的指定實驗所活動

Environmental Testing

環境測試

 This accreditation to ISO/IEC 17025:2017 demonstrates technical competence for a defined scope and
the implementation of a management system relevant to laboratory operation
(see joint IAF-ILAC-ISO Communiqué).

 此項 ISO/IEC 17025:2017 的認可資格證明此實驗所具備指定範疇內所須的技術能力並
實施一套與實驗所運作相關的管理體系
(見國際認可論壇、國際實驗所認可合作組織及國際標準化組織的聯合公報)。

The common seal of HKAS is affixed hereto by the authority of the HKAS Executive 現經香港認可處執行機關授權在此蓋上香港認可處的印章

SHUM Wai-leung, Executive Administrator 執行幹事 沈偉良 Issue Date : 28 February 2020 簽發日期 : 二零二零年二月二十八日

Registration Number : HOKLAS 066 註冊號碼 :

Date of First Registration : 15 September 1995 首次註冊日期:一九九五年九月十五日

L001934

Appendix F

Event and Action Plan

Z:\Jobs\2016\TCS00864 (CEDD)\600\EM&A Report Submission\Monthly EM&A Report\2022\July 2022\R0579v2.docx

Event / Action Plan for	construction dust
-------------------------	-------------------

Encert	Action				
Event	ET	IEC	ER	Contractor	
Action Level exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC, ER and Contractor; Repeat measurement to confirm finding; and Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method; and Review and advise the ET and ER on the effectiveness of the proposed remedial measures. 	1. Notify Contractor.	 Identify source, investigate the causes of exceedance and propose remedial measures; Rectify any unacceptable practice and implement remedial measures; and Amend working methods agreed with ER if appropriate. 	
Action Level exceedance for two or more consecutive samples	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC, ER and Contractor; Advise the ER and Contractor on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC, ER and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and ER; and If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET and ER on the effectiveness of the proposed remedial measures; and Supervise Implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; and Supervise and ensure remedial measures properly implemented. 	 Identify source, investigate the causes of exceedance and propose remedial measures; Submit proposals for remedial actions to ER with a copy to ET and IEC within 3 working days of notification; Implement the agreed proposals; and Amend proposal if appropriate. 	
Limit Level exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor, IEC and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; and Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET, ER and Contractor on possible remedial measures; Advise the ER and ET on the effectiveness of the proposed remedial measures; and Supervise implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; and Supervise and ensure remedial measures properly implemented. 	 Identify source, investigate the causes of exceedance and propose remedial measures; Take immediate action to avoid further exceedance; Submit proposals for remedial actions to ER with a copy to ET and IEC within 3 working days of notification; Implement the agreed proposals; and Amend proposal if appropriate. 	
Limit Level exceedance for two or more consecutive samples	 Notify IEC, ER, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IEC, Contractor and ER to discuss the remedial actions to be taken; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; and If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; and Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consultation with the ET and IEC, agree with the Contractor on the remedial measures to be implemented; Supervise and ensure remedial measures properly implemented; and If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Identify source, investigate the causes of exceedance and propose remedial measures; Take immediate action to avoid further exceedance; Submit proposals for remedial actions to ER with a copy to ET and IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; and Stop the relevant portion of works as determined by the ER until the exceedance is abated. 	

Event and Action Plan for Construction Noise

E	Action					
Event	ET	IEC	ER	Contractor		
Action Level Exceedance	 Notify IEC, ER and Contractor; Carry out investigation; 	1. Review the analysed results submitted by the ET;	1. Confirm receipt of notification of failure in writing;	1. Submit noise mitigation proposals to IEC and ER; and		
	 Report the results of investigation to the IEC, ER and Contractor; Discuss with the Contractor and formulate remedial measures; and Increase monitoring frequency to check mitigation effectiveness. 	 Review the proposed remedial measures by the Contractor and advise the ER accordingly; and Supervise the implementation of remedial measures. 	 Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; and Ensure remedial measures are properly implemented. 	2. Implement noise mitigation proposals.		
Limit Level Exceedance	 Identify source; Inform IEC, ER, EPD and Contractor; Repeat measurements to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Inform IEC, ER and EPD the causes and actions taken for the exceedances; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; and If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; and Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures properly implemented; and If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; and Stop the relevant portion of works as determined by the ER until the exceedance is abated. 		

Appendix G

Impact Monitoring Schedule

Impact Monitoring Schedule for the Reporting Period

	NOISE MONITORING		AIR QUALITY	MONITORING
	Date	(0700 – 1900)	1-HOUR TSP	24-HOUR TSP
Fri	1-Jul-22			
Sat	2-Jul-22	CN1, CN2, CN3 and NMS8		
Sun	3-Jul-22			
Mon	4-Jul-22			✓
Tue	5-Jul-22	NMS2, NMS3, NMS-4a, NMS5, NMS6 and NMS7	\checkmark	
Wed	6-Jul-22			
Thu	7-Jul-22	CN1, CN2, CN3 and NMS8		
Fri	8-Jul-22			
Sat	9-Jul-22			\checkmark
Sun	10-Jul-22			
Mon	11-Jul-22	NMS2, NMS3, NMS-4a, NMS5, NMS6 and NMS7	\checkmark	
Tue	12-Jul-22			
Wed	13-Jul-22	CN1, CN2, CN3 and NMS8		
Thu	14-Jul-22			
Fri	15-Jul-22			
Sat	16-Jul-22		\checkmark	
Sun	17-Jul-22			
Mon	18-Jul-22			
Tue	19-Jul-22			
Wed	20-Jul-22	CN1, CN2, CN3 and NMS8		
Thu	21-Jul-22			✓
Fri	22-Jul-22	NMS2, NMS3, NMS-4a, NMS5, NMS6 and NMS7	✓	
Sat	23-Jul-22			
Sun	24-Jul-22			
Mon	25-Jul-22			
Tue	26-Jul-22			
Wed	27-Jul-22			\checkmark
Thu	28-Jul-22	NMS2, NMS3, NMS-4a, NMS5, NMS6 and NMS7	\checkmark	
Fri	29-Jul-22			
Sat	30-Jul-22	CN1, CN2, CN3 and NMS8		
Sun	31-Jul-22			

✓	Monitoring Day	
	Sunday or Public Holiday	

Impact Monitoring Schedule for next Reporting Period

Date		NOISE MONITORING	AIR QUALITY	MONITORING
		(0700 – 1900)	1-HOUR TSP	24-HOUR TSP
Mon	1-Aug-22			
Tue	2-Aug-22			√
Wed	3-Aug-22	NMS2, NMS3, NMS-4a, NMS5, NMS6 and NMS7	\checkmark	
Thu	4-Aug-22			
Fri	5-Aug-22			
Sat	6-Aug-22	CN1, CN2, CN3 and NMS8		
Sun	7-Aug-22			
Mon	8-Aug-22			✓
Tue	9-Aug-22	NMS2, NMS3, NMS-4a, NMS5, NMS6 and NMS7	1	
Wed	10-Aug-22			
Thu	11-Aug-22			
Fri	12-Aug-22	CN1, CN2, CN3 and NMS8		
Sat	13-Aug-22			√
Sun	14-Aug-22			
Mon	15-Aug-22	NMS2, NMS3, NMS-4a, NMS5, NMS6 and NMS7	\checkmark	
Tue	16-Aug-22			
Wed	17-Aug-22			
Thu	18-Aug-22	CN1, CN2, CN3 and NMS8		
Fri	19-Aug-22			√
Sat	20-Aug-22		✓	
Sun	21-Aug-22			
Mon	22-Aug-22			
Tue	23-Aug-22	CN1 CN2 CN2 and NMC9		
Wed	24-Aug-22	CN1, CN2, CN3 and NMS8		
Thu	25-Aug-22			•
Fri	26-Aug-22	NMS2, NMS3, NMS-4a, NMS5, NMS6 and NMS7	\checkmark	
Sat	27-Aug-22			
Sun	28-Aug-22			
Mon	29-Aug-22			
Tue	30-Aug-22	CN1, CN2, CN3 and NMS8		
Wed	31-Aug-22			√

✓ Monitoring Day	
	Sunday or Public Holiday

Appendix H

Database of Monitoring Result

24-HOUR TSP MONITORING RESULT DATABASE

						24-110	JUK I	SI MONI	IOKING KE	SULI DATABA	SE				
24-hour TSI	P Monitoring	g Data for A	AMS1a												
DATE	SAMPLE NUMBER		APSED TIM			RT REA		AVG TEMP	AVG AIR PRESS	STANDARD FLOW RATE	AIR VOLUME	FILTER WI		DUST WEIGHT COLLECTED	24-hr TSP
		INITIAL	FINAL	(min)		MAX	AVG	(°C)	(hPa)	(m ³ /min)	(std m ³)	INITIAL	FINAL	(g)	$(\mu g/m^3)$
4-Jul-22	28464	25147.78		1440	39	40	39.5	28.8	1002.2	1.47	2120	2.6105	2.6649	0.0544	26
9-Jul-22	28480	25171.78	25195.78	1440	40	40	40	29.9	1005.7	1.49	2140	2.609	2.6332	0.0242	11
15-Jul-22	28388	25195.78	25219.78	1440	40	40	40	30.4	1006.5	1.49	2139	2.7795	2.8265	0.047	22
21-Jul-22	28482	25219.78	25243.78	1440	40	40	40	30.9	1012	1.49	2142	2.6225	2.6511	0.0286	13
27-Jul-22	28549	25243.78	25267.78	1440	40	41	40.5	29.5	1002.5	1.50	2158	2.6508	2.7154	0.0646	30
24-hour TSI	P Monitoring	<mark>g Data for</mark> A	AMS-5												
DATE	SAMPLE NUMBER		APSED TIM			RT REA		AVG TEMP	AVG AIR PRESS	STANDARD FLOW RATE	AIR VOLUME	FILTER WI		DUST WEIGHT COLLECTED	24-hr TSP
		INITIAL	FINAL	(min)	MIN	MAX		(°C)	(hPa)	(m ³ /min)	(std m ³)	INITIAL	FINAL	(g)	$(\mu g/m^3)$
4-Jul-22	28500				39	39	39.0	28.8	1002.2	1.41	2023	2.6141	2.6449	0.0308	15
9-Jul-22	28390				39	40	39.5	29.9	1005.7	1.42	2041	2.7474	2.7797	0.0323	16
15-Jul-22	28521		12432.19		39	39	39.0	30.4	1006.5	1.40	2023	2.6638	2.7070	0.0432	21
21-Jul-22	28506		12456.19		39	39	39.0	30.9	1012	1.41	2025	2.6632	2.7489	0.0857	42
27-Jul-22	28540	12456.19	12480.19	1440.00	38	38	38.0	31	1007.1	1.38	1987	2.6765	2.7220	0.0455	23
24-hour TSI	P Monitoring	g Data for A	AMS-6												
DATE	SAMPLE NUMBER		APSED TIM	1E		RT REA		AVG TEMP	AVG AIR PRESS	STANDARD FLOW RATE	AIR VOLUME	FILTER WI	EIGHT (g)	DUST WEIGHT COLLECTED	24-hr TSP
		INITIAL	FINAL	(min)	MIN	MAX	AVG	(°C)	(hPa)	(m ³ /min)	(std m ³)	INITIAL	FINAL	(g)	$(\mu g/m^3)$
4-Jul-22	28462	17504.11	17528.11		40	40	40.0	28.8	1002.2	1.46	2100	2.6126	2.6311	0.0185	9
9-Jul-22	28499	17528.11	17552.11	1440.00	40	40	40.0	29.9	1005.7	1.46	2100	2.6186	2.6381	0.0195	9
15-Jul-22	28391	17552.11	17576.11	1440.00	40	40	40.0	30.4	1006.5	1.46	2099	2.7385	2.7455	0.0070	3
21-Jul-22	28522				40	40	40.0	30.9	1012	1.46	2102	2.6612	2.6746	0.0134	6
27-Jul-22	28539	17600.11	17624.11	1440.00	28	28	28.0	31	1007.1	1.17	1692	2.6721	2.7292	0.0571	34
24-hour TSI	P Monitoring	, Data for A	AMS-7												
DATE	SAMPLE NUMBER		APSED TIM			RT REA		AVG TEMP	AVG AIR PRESS	STANDARD FLOW RATE	AIR VOLUME	FILTER WI		DUST WEIGHT COLLECTED	24-hr TSP
		INITIAL	FINAL	(min)		MAX	AVG	(°C)	(hPa)	(m ³ /min)	(std m ³)	INITIAL	FINAL	(g)	$(\mu g/m^3)$
4-Jul-22	28463	12840.08	12864.08		40	40	40.0	28.8	1002.2	1.44	2080	2.6185	2.6751	0.0566	27
9-Jul-22	28481	12864.08	12888.08		40	40	40.0	29.9	1005.7	1.44	2080	2.6139	2.6392	0.0253	12
15-Jul-22	28389				40	41	40.5	30.4	1006.5	1.46	2095	2.7565	2.8012	0.0447	21
21-Jul-22	28483	12912.08	12936.08	1440.00	40	40	40.0	30.9	1012	1.45	2082	2.6243	2.6673	0.0430	21
27-Jul-22	28550	12936.08	12960.08	1440.00	40	40	40.0	29.6	1010.5	1.45	2084	2.6526	2.6911	0.0385	18

NOISE MONITORING RESULT DATABASE FOR CONTRACT 1

							-								-						
Noise Meas	uremer	nt Resul	lts (dB)	of NMS2	1																
	Start	1st	t Leq (5	min)	2nd	Leq (51	nin)	3rd	Leq (5r	nin)	4th	Leq (51	nin)	5th	Leq (51	nin)	6th	Leq (5r	nin)	Leq30	Limit
Date	Start Time	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	min,	Level
	Time	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
7-Jul-22	10:17	63.4	64.2	60.3	58.5	62.1	57.6	62.8	63.5	58.9	62.5	64.4	60.7	62.1	64.3	59.2	61.2	63.5	59.8	62	70
11-Jul-22	11:23	60.9	65	56	62.8	65.5	55.5	63.2	65	56	61.7	65	58.5	63.6	65.5	56.5	62.7	65	56	63	70
22-Jul-22	13:00	61.2	62.5	60.3	63.7	65.8	60.5	63.5	65.5	60	62.4	63.3	59.9	63.1	63.8	58.4	60.4	62.1	58.6	63	70
28-Jul-22	13:08	60.8	63.1	54.7	61.5	63.8	56.2	63.3	65.2	56.7	63.5	65.8	57.1	62.2	64.7	56.3	60.9	64.1	56.4	62	70

Noise Meas	uremei	nt Resu	lts (dB)	of NM	S3																
	Stant.	1st	Leq (5n	nin)	2nd	Leq (5)	min)	3rd	Leq (5)	min)	4th	Leq (51	nin)	5th	Leq (51	nin)	6th	Leq (5)	min)	I. a. a. 20i-a	Limit
Date	Start Time	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq30min, dB(A)	Level
	1 mie	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	uD(A)	dB(A)
7-Jul-22	14:42	62.2	64.1	59.9	62.8	65.3	59.5	63.4	66.2	61.7	64.4	65.0	61.0	64.6	66.3	62.6	66.0	68.7	65.0	64	75
11-Jul-22	14:18	63.2	65.0	59.0	61.6	65.0	58.5	60.7	63.5	57.5	62.7	65.0	59.5	62.6	65.0	58.5	63.6	66.0	59.5	63	75
22-Jul-22	10:18	63.2	65.8	56.7	61.7	63.9	55.4	58.2	62.3	55.1	62.4	66.8	58.3	63.7	66.9	59.1	64.3	67.6	59.8	63	75
28-Jul-22	14:39	61.6	63.9	58.4	61.5	63.9	57.4	62.5	64.9	58.4	62.1	63.9	57.9	60.5	63.9	57.4	59.6	62.4	56.4	61	75

Noise Mea	sureme	ent Resu	ilts (dB)) of NM	[S4a																
	Start	1st	Leq (5n	nin)	2nd	Leq (51	min)	3rd	Leq (51	min)	4th	Leq (5r	nin)	5th	Leq (51	nin)	6th	Leq (51	nin)	Leq30m	Limit
Date	Start Time	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	in,	Level
	Time	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
7-Jul-22	13:59	67.8	70.3	64.5	67.4	69.2	64.7	67.4	69	65	66.6	68.3	64.6	67	68.7	65	67.5	69.2	65.3	67	75
11-Jul-22	9:25	71.8	73.5	66.5	70.6	73	66	69.2	73.5	65.5	68.4	70	65.5	68.8	72.5	66	69.7	72	65.5	70	75
22-Jul-22	10:13	63.9	66.6	60.7	63.1	64.9	60.9	65.4	69.1	61.6	66.7	69.6	62.9	69.2	71.9	62.2	66.5	70.4	62.8	66	75
28-Jul-22	10:57	68.1	70.6	63.2	67.8	69.5	62.7	67.4	69.1	63.3	68.2	69.8	64.1	65.4	67.6	62.7	66.3	69.8	63.4	67	75

Noise Measu	urement	t Result	ts (dB)	of NMS	5																
	Start	1st	Leq (51	nin)	2nd	Leq (5)	min)	3rd	Leq (5)	min)	4th	Leq (5r	nin)	5th	Leq (5r	nin)	6th	Leq (51	min)	Log20min	Limit
Date	Time	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq30min, dB(A)	Level
	Time	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	uD(A)	dB(A)
7-Jul-22	13:18	62.9	65	60.7	62.1	63.4	60.8	61.2	62.4	59.4	61.8	63.5	59.6	60.8	61.7	59.6	62.1	63.5	60.3	62	75
11-Jul-22	10:14	66.8	69.5	64.5	68.2	72.5	65.5	69.7	73.5	66	69.2	71.5	66	71.3	73.5	66.5	72.4	73.5	65	70	75
22-Jul-22	11:06	68.7	73.7	64.1	68.5	71.6	61.9	70.1	73.2	63.1	66.5	70	61	68.7	73.7	63	68.5	70.6	64.1	69	75
28-Jul-22	10:12	66.7	68.1	62.3	67.2	69.3	64	67.6	69.5	63.7	67	69.1	64.3	68.2	70.3	63.4	68.7	70.6	62.9	68	75

Noise Measu	uremen	nt Resul	ts (dB)	of NMS	56																
	C4an4	1st	Leq (5n	nin)	2nd	Leq (5)	min)	3rd	Leq (5	min)	4th	Leq (51	nin)	5th	Leq (51	min)	6th	Leq (51	nin)	Las 20min	Limit
Date	Start Time	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq30min, dB(A)	Level
	Time	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	uD(A)	dB(A)
7-Jul-22	15:38	65.8	68.5	64.6	64.8	65.7	63.6	66.1	67.5	64.3	65.9	67.3	64.2	65.2	65.9	63.7	65.9	67.4	64.2	66	75
11-Jul-22	15:20	65.6	68	62.5	66.2	69.5	63.5	63.8	68.5	62	66.2	70	63	68.3	70	32.5	67.8	71	65.5	67	75
22-Jul-22	10:54	64.8	67.5	59.3	62.2	65.8	60.3	63.2	65.9	61.1	61.3	64.3	58.7	64.5	67.9	61.4	62.6	65.9	60.2	63	75
28-Jul-22	15:37	61.8	64.8	59.2	65	68.4	61.9	63.1	66.4	60.7	65.3	68	59.8	62.7	66.3	60.8	63.7	66.4	61.6	64	75

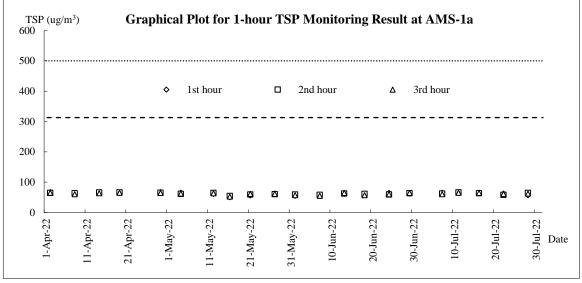
Noise Measu	uremer	nt Resul	lts (dB)	of NMS	57																
	Start	1st	Leq (5n	nin)	2nd	Leq (5)	min)	3rd	Leq (51	min)	4th	Leq (51	nin)	5th	Leq (51	nin)	6th	Leq (51	nin)	Log20min	Limit
Date	Start Time	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq30min, dB(A)	Level
	Time	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	uD(A)	dB(A)
7-Jul-22	16:23	67.1	70.7	60.5	64.5	67.7	60.2	64.7	68.1	61.1	66.3	70	62.8	65.7	68.9	61.8	66.6	70.2	62.7	66	75
11-Jul-22	16:22	66.8	70.5	62.5	67.2	71	63.5	68.3	71.5	66	66.2	69.5	62.5	67.7	70	63	65.9	69	62.5	67	75
22-Jul-22	13:11	65.4	67.6	61.2	65.6	68.1	62.3	67.8	69.7	63.1	64.1	66.3	60.2	63.6	65.8	60.1	65.5	68.3	62.7	66	75
28-Jul-22	16:30	65.7	69	62	67.2	69.5	62.5	65.4	68.5	62	66.3	70	62	66.7	70.5	63	67.8	71	65.5	67	75

Noise Measu	uremen	t Resul	ts (dB)	of NMS	58																
	Stant	1st	Leq (5r	nin)	2nd	Leq (5	min)	3rd	Leq (5	min)	4th	Leq (51	nin)	5th	Leq (51	nin)	6th	Leq (51	nin)	Log20min	Limit
Date	Start Time	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq30min, dB(A)	Level
	Time	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	uD(A)	dB(A)
7-Jul-22	9:16	61.6	65.2	59.7	62.6	66.4	60.3	60.5	64.2	58.9	60.1	63.9	58.7	60.3	63.2	60.1	58.9	63.8	57.3	61	75
14-Jul-22	8:57	58.6	61.4	54.9	62.3	65.7	55.1	57.2	61.1	54.3	60.6	64.8	56.7	57.1	60.9	54.2	59.8	63.5	55.8	60	75
20-Jul-22	9:06	57.4	60	54.5	57.1	60.3	53.9	59.3	61.7	55.2	61.8	64.7	56.2	58.3	61.1	54.8	62.1	65.6	56.5	60	75
30-Jul-22	10:01	61	64.8	59.6	61.2	64.1	61	59.8	64.7	58.2	62.5	66.1	60.6	63.5	67.3	61.2	61.4	65.1	59.8	62	75

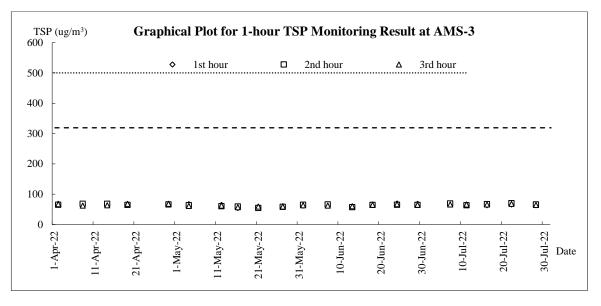
NOISE MONITORING RESULT DATABASE FOR CONTRACT 3

Noise Meas	uremer	nt Resul	lts (dB)	of CN1																	
	Start	1st	Leq (5n	nin)	2nd	Leq (51	min)	3rd	Leq (51	nin)	4th	Leq (5r	nin)	5th	Leq (5r	nin)	6th	Leq (5r	nin)	Leq30min,	Limit
Date	Time	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	dB(A)	Level
	Time	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	uD(A)	dB(A)
7-Jul-22	14:38	62.6	64.3	58.9	63.2	64.7	59.8	62.1	64.2	59.1	60.3	62.8	58.1	62.3	64.8	60.1	61.3	62.7	58.2	62	70
14-Jul-22	11:25	63.1	66.7	58.9	60.3	62.5	58.8	62.7	63.6	59.8	60.1	64.5	58.3	61.3	64.2	60.4	59.3	63.6	58.5	61	70
20-Jul-22	11:18	62.9	64.3	58.2	60.2	62	58.1	62.4	63.6	59.6	64.8	67.3	59.8	65.1	66.4	6.5	60.7	63.5	58.3	63	70
30-Jul-22	11:30	64	66.5	59	64.3	65.6	5.7	59.9	62.7	57.5	62.1	63.5	57.4	59.4	61.2	57.3	61.6	62.8	58.8	62	70

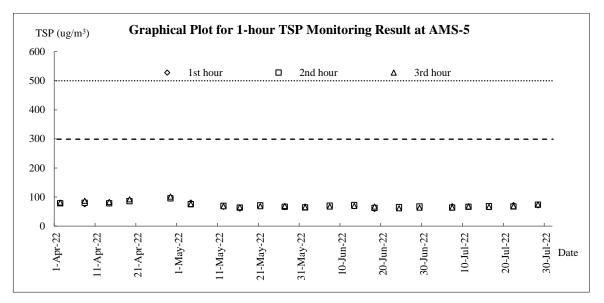
Noise Meas	uremer	nt Resul	lts (dB)	of CN2	2																
	Start	1st	Leq (5n	nin)	2nd	Leq (5	min)	3rd	Leq (5)	min)	4th	Leq (51	min)	5th	Leq (5)	nin)	6th	Leq (5)	min)	L a a 20 miles	Limit
Date	Start Time	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq30min, dB(A)	Level
	1 mie	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	uD(A)	dB(A)
7-Jul-22	13:58	63.6	65.9	59.7	62.3	64.8	59.2	60.6	62.5	59.1	62.1	63.2	59.3	61.3	63.8	58.9	61.2	63.6	59.1	62	70
14-Jul-22	10:38	60.1	62.4	57.8	61.3	63.7	56.8	60.5	63.1	58.1	59.7	61.5	58	57.1	60.3	56.8	61.4	62.7	58.9	60	70
20-Jul-22	10:39	58.2	60.7	56.4	60.3	62.8	57.9	61.4	62.2	59	60.1	61.8	59.6	61.4	62.5	59.8	58.3	6.5	56.3	60	70
30-Jul-22	10:52	60.8	62.5	60.3	62.1	63.2	60.5	59	7.2	57	58.9	61.4	57.1	61	63.5	58.6	62.1	62.9	59.7	61	70

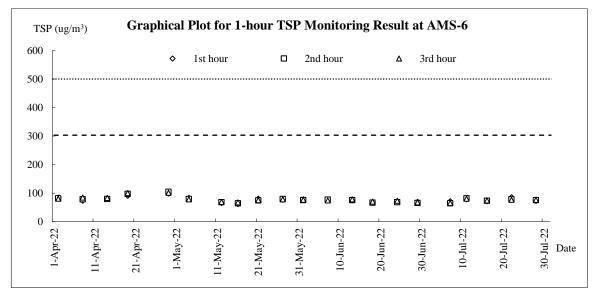

Noise Meas	uremer	nt Resu	lts (dB)	of CN3	;																
	Start	1st	Leq (5r	nin)	2nd	Leq (5)	min)	3rd	Leq (5)	min)	4th	Leq (51	nin)	5th	Leq (51	min)	6th	Leq (5	min)	Log20min	Limit
Date	Start Time	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq,	L10,	L90,	Leq30min, dB(A)	Level
	Time	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	uD(A)	dB(A)
7-Jul-22	11:24	63.7	66.9	57.8	64.6	68.2	56.7	61.1	64.7	55.9	62.4	65.6	56.1	65.1	68.7	58.5	62.5	65.7	58.2	63	75
14-Jul-22	9:46	59.4	63.8	55.6	59.7	62.9	55.1	61.3	64.8	56.1	57.3	60.2	54.3	60.2	64.7	56.5	60.4	65.7	56.8	60	75
20-Jul-22	9:53	62.6	65.3	56.9	64.1	65.4	58.6	61.8	64.1	58.7	60.2	62.6	57.7	63.5	65.6	58.1	62	63.9	57.5	63	75
30-Jul-22	9:16	58.9	61.3	56.4	62.2	64.3	56.8	60.7	62.6	56.2	61.3	64	55.6	62.8	64.1	57.3	60.5	62.8	57.4	61	75

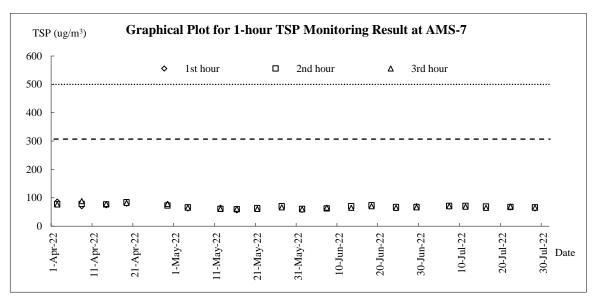
Appendix I


Graphical Plots for Monitoring Result

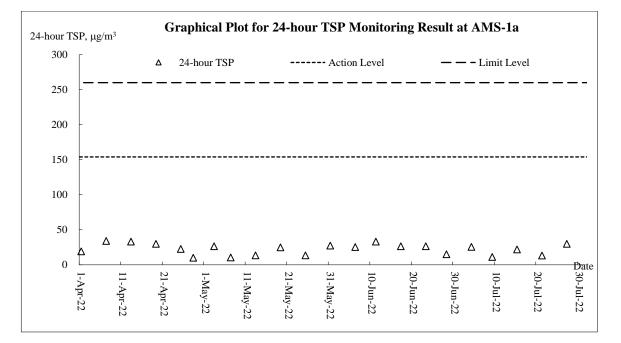
Air Quality – 1-hour TSP

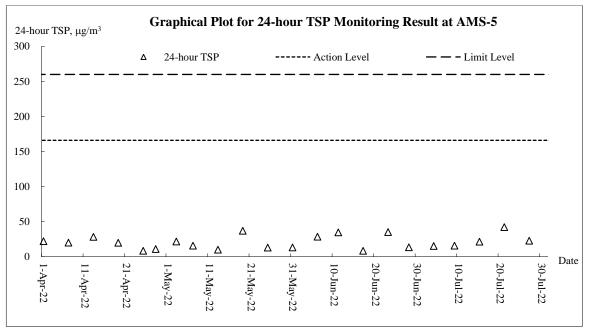


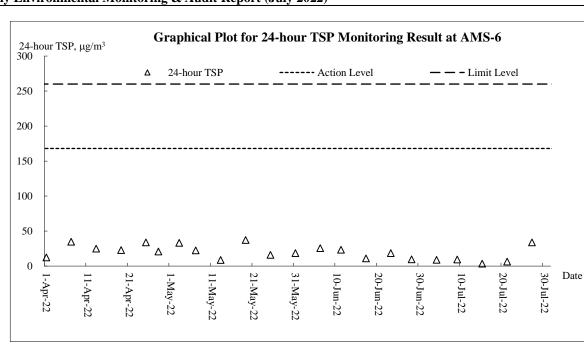


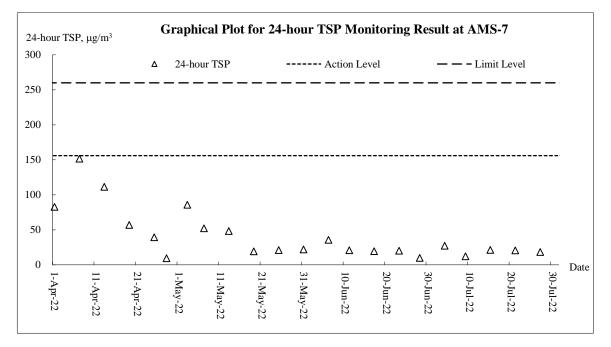


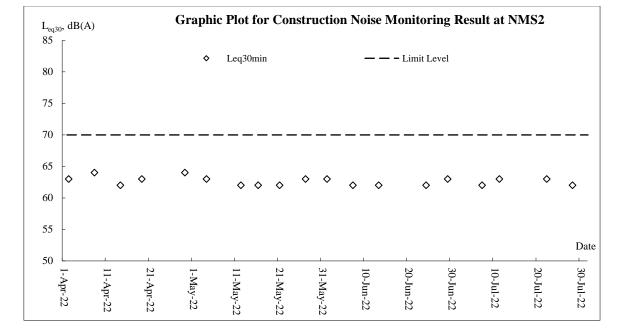
Monthly Environmental Monitoring & Audit Report (July 2022)

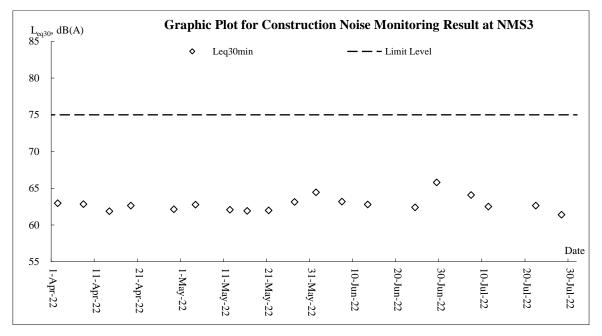


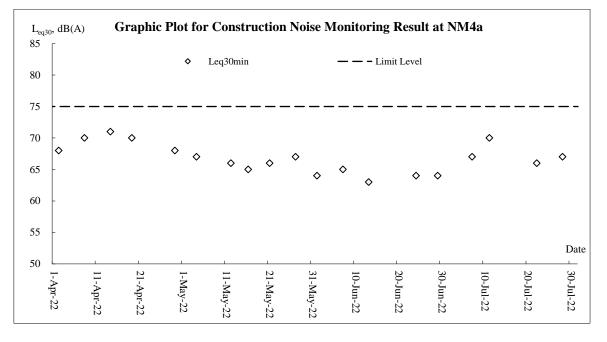


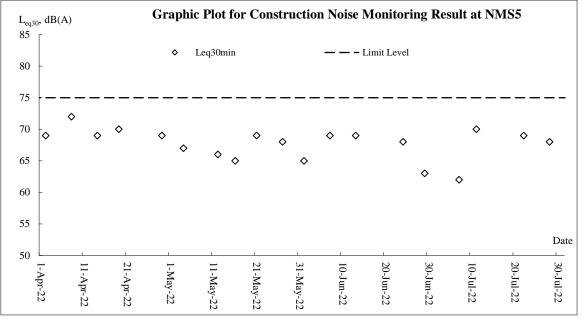


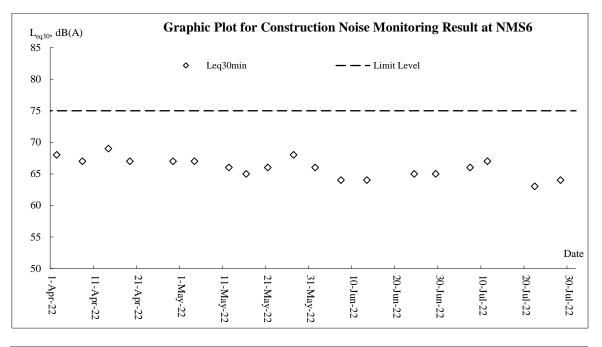

Air Quality – 24-hour TSP

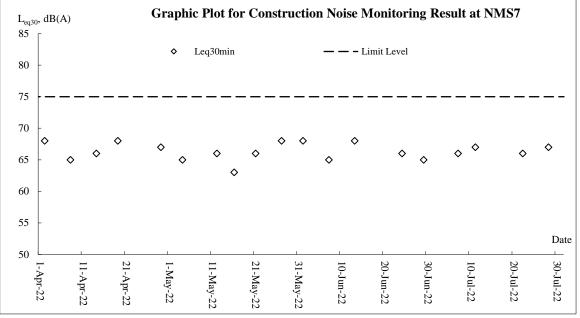


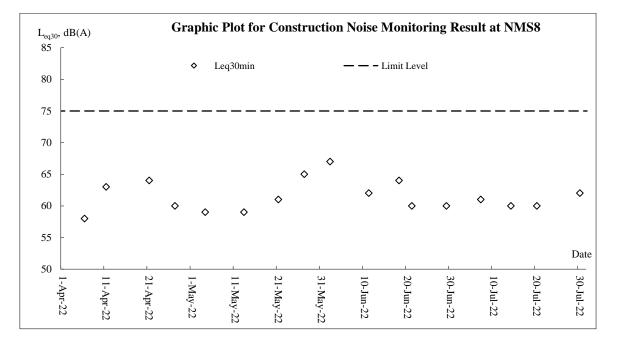


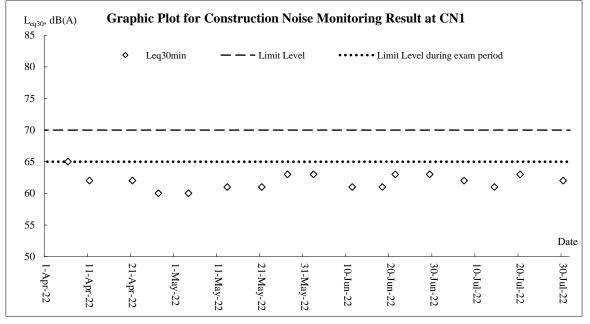


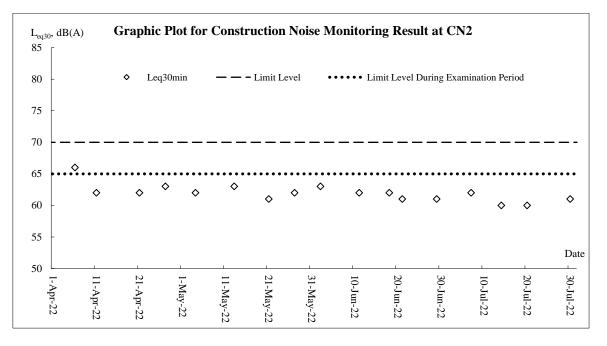

Noise

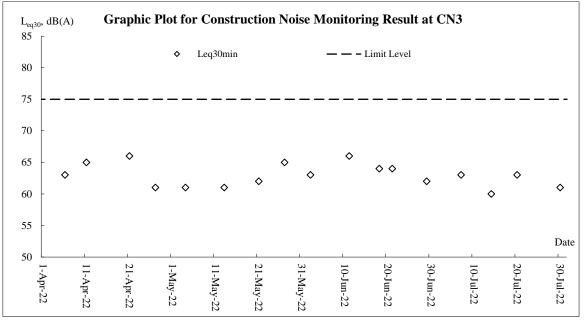












Monthly Environmental Monitoring & Audit Report (July 2022)

Appendix J

Meteorological Data

			Total	Kwun Tong Station	Kai Tal	k Station	King's Park Station
Date		Weather	Rainfall (mm)	Mean Air Temp. (°C)	Wind Speed (km/h)	Wind Direction	Mean Relative Humidity (%)
1-Jul-22	Fri	Moderate to fresh easterly winds, strong offshore and on high ground tonight.	63	26.5	22.5	Е	84
2-Jul-22	Sat	Moderate to fresh easterly winds, strong offshore and on high ground tonight.	72.4	26.2	29.5	E/SE	89.2
3-Jul-22	Sun	Isolated thunderstorms in the afternoon.	0	28.6	17.5	SE	82.5
4-Jul-22	Mon	Mainly cloudy with a few showers.	0.4	28.2	13.5	S	86
5-Jul-22	Tue	Moderate to fresh southwesterly winds.	0.2	28.2	9.2	S/SW	83.2
6-Jul-22	Wed	Moderate south to southeasterly winds.	0.5	28.7	7	S/SW	77
7-Jul-22	Thu	Sunny intervals and a few showers	13.1	27.8	11.2	E/SE	84.5
8-Jul-22	Fri	Hot with sunny periods and isolated showers.	Trace	29.4	10	E/SE	80
9-Jul-22	Sat	Moderate east to southeasterly winds.	Trace	29.5	15	E/SE	79
10-Jul-22	Sun	t will be fine. Very hot in the afternoon.	Trace	29.7	14.7	SE	74.7
11-Jul-22	Mon	Very hot in the afternoon. Light to moderate easterly winds.	0	30.3	12	SE	73
12-Jul-22	Tue	Mainly fine and very hot.	0	30.3	11	SE	70.5
13-Jul-22	Wed	Light winds, moderate southerlies later.	0	30.4	11.7	SE	71.2
14-Jul-22	Thu	Hot apart from a few showers.	0	30.6	6.2	SW	75.5
15-Jul-22	Fri	Sunny periods in the afternoon.	0.2	30.5	6.2	W/SW	78
16-Jul-22	Sat	Light to moderate southwesterly winds.	1.5	30.3	10.2	W/SW	76
17-Jul-22	Sun	Very hot. Sunny in the afternoon.	1.2	29.9	12.5	W/SW	75
18-Jul-22	Mon	Fine tonight. Moderate southwesterly winds.	2.7	30.5	8	SE	78
19-Jul-22	Tue	Mainly fine and very hot apart from isolated showers.	Trace	30.1	6.2	S	75
20-Jul-22	Wed	Moderate southerly winds.	0.6	30.5	14.5	E/SE	80
21-Jul-22	Thu	Fine and very hot.	0.3	30.2	10	E/SE	74.7
22-Jul-22	Fri	Light to moderate south to southeasterly winds.	0	26.8	7	SW	69.7
23-Jul-22	Sat	Sunny and very hot in the afternoon.	0	31.3	7.2	SW	71.5
24-Jul-22	Sun	Clear tonight. Light to moderate southwesterly winds.	0	32.7	6.2	SW	71
25-Jul-22	Mon	Light to moderate southwesterly winds.	0	32.3	6.7	SW	76.2
26-Jul-22	Tue	Very hot and sunny during the day	0	31.4	5.5	SW	71.7
27-Jul-22	Wed	Fine and very hot.	0	31.7	6.2	SW	69.5
28-Jul-22	Thu	Light to moderate southwesterly winds.	0	Mainten ance	9.2	W/SW	74
29-Jul-22	Fri	Mainly fine apart from isolated showers and squally thunderstorms.	0	32.6	6	SW	73
30-Jul-22	Sat	Sunny and very hot in the afternoon.	2.4	28.1	11	W/SW	79.2
31-Jul-22	Sun	Very hot and sunny during the day	0	31.3	7	W/SW	73

Appendix K

Waste Flow Table

 $Z:\label{eq:loss} 2016\TCS00864\ (CEDD)\600\EM\&A\ Report\ Submission\Monthly\ EM\&A\ Report\2022\July\ 2022\R0579v2.docx$

		Actual Quan	tities of Inert C&I	O Materials Genera	ted Monthly			Actual Quantities	of C&D Wastes C	Generated Monthly	
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract (see Note 6)	Reused in other Projects (see Note 8)	Disposed as Public Fill	Imported Fill	Metals (see Note 9)	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste (see Note 5)	Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
Jan	2.871	0.000	2.517	0.000	0.354	0.000	0.000	0.000	0.015	0.000	0.082
Feb	1.372	0.000	1.187	0.000	0.185	0.000	0.000	0.000	0.000	0.000	0.102
Mar	2.226	0.000	1.128	0.000	1.099	0.000	0.000	0.000	0.000	0.000	0.075
Apr	8.798	0.000	3.728	4.288	0.782	0.000	0.000	0.791	0.000	0.000	0.160
May	3.665	0.000	0.000	3.081	0.584	0.000	0.000	0.813	0.000	0.000	0.123
Jun	12.282	13.582	0.000	11.784	0.498	0.000	0.004	0.000	0.007	0.000	0.081
Sub-total	31.214	13.582	8.560	19.153	3.501	0.000	0.004	1.604	0.022	0.000	0.623
Jul	9.504	0.000	0.000	9.473	0.031	0.000	0.004	0.000	0.007	0.000	0.107
Aug	0.000										
Sep	0.000										
Oct	0.000										
Nov	0.000										
Dec	0.000										
Total	40.718	13.582	8.560	28.626	3.532	0.000	0.007	1.604	0.029	0.000	0.730

Monthly Summary Waste Flow Table for 2022 (year)

Notes:

(1) The performance targets are given in PS Clause 1.119 (14).

(2) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material and waste will be collected by recycler for recycling.

(4) Use the conversion factor, density of general refuse (1 t/m^3) and inert C&D materials (2 t/m^3) .

(5) Use the conversion factor for chemical waste (0.88kg/L).

(6) Assume a dump truck delivers 7.5 m^3 material in 1 trip.

(7) The cut-off date of this summary is 20^{th} of each month.

(8) The Inert C&D materials of reused in other Projects including glass materials.

(9) The C&D waste generation of metal including rechargable battery recycling.

Remarks: refer to Rock and AHM Record (Z:\04 SUPPORT WORK FOLDERS\F. ENVIRONMENTAL\4 - Implementation and Operation\4.4 - Documentation and its Control\11 - WFT, ULSD & Timber\Waste Flow Table\2017-07)

Name of Department : <u>CEDD</u>

Contract No. : <u>NE/2016/05</u>

Monthly Summary Waste Flow Table for 2022 (year)

[PS Clause 1.129]

		Actual Quantit	ties of Inert C&	&D Materials G	enerated Mont	hly	Act	ual Quantities o	f C&D Wastes	Generated Mo	onthly
Month	Total Quantity Generated	Hard Rock & Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemicals Waste	Others, e.g. general refuse
	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 m ³)
Jan	0.02	0	0	0	0.02	0	0	0	0	0	0.05
Feb	0.01	0	0	0	0.01	0	0	0	0	0	0.05
Mar	0.02	0	0	0	0.02	0	0	0	0	0	0.01
Apr	0.02	0	0	0	0.02	0	0	0	0	0	0.01
May	0.04	0	0	0	0.04	0	0	0	0	0	0.03
June	0.13	0	0	0	0.13	0	0	00	0	0	0.02
Sub-total	0.24	0	0	0	0.24	0	0	0	0	0	0.17
July	0.15	0	0	0	0.15	0	0	0	0	0	0.02
Aug											
Sept											
Oct											
Nov											
Dec											
Total	0.39	0	0	0	0.39	0	0	0	0	0	0.19

Notes: (1) The performance targets are given in PS Clause 6.14

(2) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.

(4) The Contractor shall also submit the latest forecast of the total amount of C&D materials expected to be generated from the Works. Together with a breakdown of the nature where the total amount of C&D materials expected to be generated from the Works is equal to or exceeding 50,000 m^3 .

Development of Anderson Road Quarry Site - Road Improvement Works and Pedestrian Connectivity Facilities Works Phase 2A

		Actual Quan	tities of Inert C&	D Materials Genera	ted Monthly		Actual Quantities of C&D Wastes Generated Monthly					
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract (see Note 6)	Reused in other Projects (see Note 6)	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste (see Note 5)	Others, e.g. general refuse	
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)	
Jan	1.587	0.000	0.441	0.000	1.146	0.000	0.003	0.000	0.003	0.000	0.052	
Feb	1.039	0.000	0.200	0.000	0.839	0.000	0.000	0.000	1.694	0.000	0.016	
Mar	1.261	0.000	0.090	0.000	1.171	0.000	0.000	0.000	0.434	0.000	0.041	
Apr	1.200	0.000	0.460	0.000	0.740	0.000	0.002	0.099	0.523	0.000	0.008	
May	1.087	0.000	0.094	0.000	0.993	0.000	0.000	0.000	1.456	0.070	0.016	
Jun	0.976	0.000	0.014	0.265	0.697	0.000	0.000	0.000	0.602	0.000	0.013	
Sub-total	7.149	0.000	1.299	0.265	5.586	0.000	0.005	0.099	4.712	0.070	0.146	
Jul	1.579	0.000	0.053	0.495	1.032	0.000	0.000	0.000	1.778	0.000	0.013	
Aug												
Sep												
Oct												
Nov												
Dec												
Total	8.729	0.000	1.351	0.760	6.617	0.000	0.005	0.099	6.490	0.070	0.159	

Monthly Summary Waste Flow Table for <u>2022</u> (year)

Notes:

(1) The performance targets are given in PS Clause 1.129 (4).

(2) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material and waste will be collected by recycler for recycling.

(4) Use the conversion factor, density of general refuse (1 t/m^3) and inert C&D materials (2 t/m^3) .

(5) Use the conversion factor for chemical waste (0.88kg/L).

(6) Assume a dump truck delivers 7.5 m^3 material in 1 trip.

Contract No.: ED/2020/02 Development of Anderson Road Quarry Site – Infrastructure, Greening and Landscape Works

Contract No.: ED/2020/02

	Ac	tual Quantitie	s of Inert C&I) Materials Ge	merated Monti	ily	Actua	al Quantities o	f C&D Wastes	s Generated M	lonthly
Month	Total Quantity of Materials Generated	Hard Rock, Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 m ³)*
2021 Total	608.254	394.831	0.000	0.000	213.423	0.000	0.000	0.000	0.000	0.000	0.044
2022											
Jan	25.019	0.000	0.000	0.000	25.019	0.000	0.000	0.000	0.000	0.000	0.019
Feb	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.015
Mar	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.031
Apr	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.014
May	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002
June	0.795	0.000	0.000	0.795	0.000	0.000	0.000	0.000	0.000	0.000	0.000
July	0.000	0.000	0.000	0.000	176.540	0.000	0.000	0.000	0.000	0.000	0.000
Aug	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Sep	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oct	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nov	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Dec	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Accumulated Total (2021-2022)	634.068	394.831	0.000	0.795	414.982	0.000	0.000	0.000	0.000	0.000	0.125

Monthly Summary Waste Flow Table

*Remarks: Conversion factor for general refuse, 1 tonne = 2m3

Wing Lee – Univic Joint Venture	Rev. No.	16
ED/2019/02 - Environmental Management Plan	Iggue Date	31-Jul-2022
Appendices - Appendix 13	Issue Date	31-JUI-2022

Name of Department : <u>CEDD</u>

Contract No. : <u>ED/2019/02</u>

Monthly Summary Waste Flow Table for 2022 (year)

;	<u>Wonthly Summary Waste Flow Table for 2022</u> (year)										
				&D Materials G	enerated Mont	thly	Annu	al Quantities of	C&D Material	s Generated M	Ionthly
Month	Total Quantity Generated	Hard Rock & Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 2)	Chemicals Waste	Others, e.g. general refuse
	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 m ³)
Jan	0.18	0.18	0	0	0.18	0	0	0	0	0	0.02
Feb	0.02	0.02	0	0	0.02	0	0	0	0	0	0
Mar	0.31	0.31	0	0	0.31	0	0	0	0	0	0.01
Apr	0.162	0.162	0	0	0.162	0	0	0	0	0	0.009
May	0.279	0.279	0	0	0.279	0	0	0	0	0	0.008
June	0.039	0.039	0	0	0.039	0	0	0	0	0	0.006
Sub-total	0.990	0.990	0	0	0.990	0	0	0	0	0	0.053
July	0.028	0.028	0	0	0.028	0	0	0	0	0	0.003
Aug											
Sept											
Oct											
Nov											
Dec											
Total	1.018	1.018	0	0	1.018	0	0	0	0	0	0.056

Notes: (1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(2) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.

Appendix L

Implementation Schedule for Environmental Mitigation Measures

EM&A		Objectives of the Recommended	Who to	Location of the		Imple	ementation	Status	
Ref.	Recommended Mitigation Measures	Measures & Main Concern to Address	implement the measures?	measure	Contract 1	Contract 2	Contract 3	Contract 4	Contract 5
	Dust Impact (Contraction I	Phase)							
\$4.7.2 to \$4.7.5	Mitigation measures in form of regular watering under a good site practice should be adopted. Watering once per hour on exposed worksites and haul road is proposed to achieve dust removal efficiency of 91.7%. While the above watering frequencies are to be followed, the extent of watering may vary depending on actual site conditions but should be sufficient to maintain an equivalent intensity of no less than 1.75 L/m^2 to achieve the respective dust removal efficiencies.	Minimize dust impact at the nearby sensitive receivers	Contractor	All construction sites	V	V	V	V	V
S4.7.6	The Contractor shall follow the procedures and requirements given in the Air Pollution Control (Construction ion Dust) Regulation.	Minimize dust impact at the nearby sensitive receivers	Contractor	All construction sites	V	V	V	V	V
S4.7.6	 Following dust suppression measures should also be incorporated by the Contractor to control the dust nuisance throughout the construction phase: Any excavated or stockpile of dusty material should be covered entirely by impervious sheeting or sprayed with water to maintain the entire surface wet and then removed or backfilled or reinstated where practicable within 24 hours of the excavation or unloading; Any dusty materials remaining after a stockpile is removed should be wet ted with water and cleared from the surface of roads; A stockpile of dusty material should not be extend beyond the pedestrian barriers, fencing or traffic cones; The load of dusty materials on a vehicle leaving a construction ion site should be covered entirely by impervious sheeting to ensure that the dusty materials do not leak from the vehicle; Where practicable, vehicle washing facilities with high pressure water jet should be provided at every discernible or designated vehicle exit point. The area where vehicle washing takes place and the road sect ion between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores; 	Minimize dust impact at the nearby sensitive receivers	Contractor	All construction sites	e	@	æ	e	@

			Objectives of the	Who to	Location of the		Imple	ementation S	Status	
EM&A Ref.		Recommended Mitigation Measures	Recommended Measures & Main	implement the measures?	Location of the measure	Contract	Contract	Contract	Contract	Contract
			Concern to Address			1	2	3	4	5
		works, hoarding of not less than 2.4m high should								
		be provided as far as practicable along the site								
		boundary with provision for public crossing. Good								
		site practice shall also be adopted by the Contractor								
		to ensure the conditions of the hoardings are								
		properly maintained throughout the construction ion								
	•	period. The port ion of any road leading only to								
	•	construction ion site that is within 30m of a vehicle								
		entrance or exit should be kept clear of dusty								
		materials;								
	•	Surfaces where any pneumatic or power-driven								
		drilling, cutting, polishing or other mechanical								
		breaking operation takes place should be sprayed								
		with water or a dust suppression chemical								
		continuously;								
	•	Any area that involves demolition activities should								
		be sprayed with water or a dust suppression								
		chemical immediately prior to, during and								
		immediately after the activities so as to maintain the								
		entire surface wet ; Where a scaffolding is erected around the perimeter								
	•	of a building under construction, effective dust								
		screens, sheeting or netting should be provided to								
		enclose the scaffolding from the ground floor level								
		of the building, or a canopy should be provided								
		from the first floor level up to the highest level of								
		the scaffolding;								
	•	Any skip hoist for material transport should be								
		totally enclosed by impervious sheeting;								
	•	Every stock of more than 20 bags of cement or dry								
		pulverised fuel ash (PFA) should be covered								
		entirely by impervious sheeting or placed in an area								
		sheltered on the top and the 3 sides; Cement or dry PFA delivered in bulk should be								
	•	stored in a closed silo fit ted with an audible high								
		level alarm which is interlocked with the material								
		filling line and no overfilling is allowed; and								
	•	Exposed earth should be properly treated by								
		compact ion, turfing, hydroseeding, vegetation								
		planting or sealing with latex, vinyl, bitumen,								

EM&A	Recommended Mitigation Measures	Objectives of the Recommended	Who to implement the	Location of the		Imple	ementation S	Status	
Ref.	Recommended Wrugation Wreasures	Measures & Main Concern to Address	measures?	measure	Contract 1	Contract 2	Contract 3	Contract 4	Contract 5
	shortcrete or other suitable surface stabiliser within six months after the last construction activity on the construction site or part of the construction site where the exposed earth lies.								
S4.7.7	Implement regular dust monitoring under EM&A programme during the Construction phase.	Control construction airborne noise	Selected Representative dust monitoring station	All construction sites where practicable	V	N/A	V	N/A	N/A
	Noise Impact (Contraction	Phase)		·					
S5.6.9	 Implement the following good site management practices: only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction ion programme; machines and plant (such as trucks, cranes) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum; plant known to emit noise strongly in one direct ion, where possible, be orientated so that the noise is directed away from nearby NSRs; silencers or mufflers on construction ion equipment should be properly fit ted and maintained during the construction ion works; mobile plant should be sited as far away from NSRs as possible and practicable; and material stockpiles, mobile container site office and other structures should be effectively utilised, where practicable, to screen noise from on-site construction activities. 	Control construction ion airborne noise	Contractor	All construction sites where practicable	e	V	V	œ	e
\$5.6.11 to \$5.6.13	Use of "Quiet" Plant and Working Methods.	Reduce the noise levels of plant items	Contractor	All construction sites where practicable	V	N/A	N/A	N/A	N/A
S5.6.14	Install temporary site hoarding (approx 2.5m high) located on the site boundaries between noisy construction activities and NSRs. The conditions of the hoardings shall be properly maintained throughout the construction period.	Reduce the construction ion noise levels at low-level zone of NSRs through partial screening.	Contractor	All construction sites where practicable	V	V	V	V	V
S5.6.15 to S5.6.18	Install movable noise barriers, full enclosure and acoustic mat, screen the noisy plants including air compressor and generator.	Screen the noisy plant items to be used at all construction sites	Contractor	All construction ion sites where practicable	V	V	N/A	V	N/A
S5.6.19	Sequencing operation of construction plants equipment.	Operate sequentially	Contractor	All construction	V	V	N/A	N/A	N/A

Z:\Jobs\2016\TCS00864 (CEDD)\600\EM&A Report Submission\Monthly EM&A Report\2022\July 2022\R0579v2.docx

		Objectives of the				Imple	ementation S	Status	
EM&A	Recommended Mitigation Measures	Recommended	Who to implement the	Location of the					
Ref.		Measures & Main Concern to Address	measures?	measure	Contract 1	Contract 2	Contract 3	Contract 4	Contract 5
		within the same work site to reduce the construction airborne noise		ion sites where practicable					
\$5.6.34	Implement temporary noise barrier along Road L4.	Further reduce the construction ion airborne noise	Contractor	Road L4 of ARQ	N/A	N/A	N/A	N/A	N/A
\$5.6.35	Implement a noise monitoring under EM&A programme.	Monitor the construction noise levels at the selected representative locations	Contractor	Selected Representative Noise monitoring stations	V	N/A	V	N/A	N/A
В	Water Quality Impact (Cor								
S6.6.3	 <u>Construction Runoff</u> In accordance with the Practice Note for Professional Persons on Construction ion Site Drainage, Environmental Protect ion Department , 1994 (ProPECC PN 1/94), best management practices should be implemented as far as practicable as below: At the start of site establishment , perimeter cut -off drains to direct off-site water around the site should be constructed with internal drainage works. Channels (both temporary and permanent drainage pipes and culverts), earth bunds or sand bag barriers should be provided on site to direct stormwater to silt removal facilities. Diversion of natural stormwater should be provided as far as possible. The design of temporary on-site drainage should prevent runoff going through site surface, construction machinery and equipment in order to avoid or minimize polluted runoff. Sediment at ion tanks with sufficient capacity, constructed from preformed individual cells of approximately 6 to 8 m³ capacities, are recommended as a general mitigation measure which can be used for set t ling surface runoff prior to disposal. The system capacity shall be flexible and able to handle multiple inputs from a variety of sources and suited to applications where the influent is pumped. 	Control construction runoff	Contractor	All construction sites	@	@	@	@	V

		Objectives of the	Who to			Imple	ementation S	Status	
EM&A Ref.	Recommended Mitigation Measures	Recommended Measures & Main	implement the measures?	Location of the measure	Contract	Contract	Contract	Contract	Contract
		Concern to Address			1	2	3	4	5
	 The dikes or embankments for flood protect ion should be implemented around the boundaries of earthwork areas. Temporary ditches should be provided to facilitate the runoff discharge into an appropriate watercourse, through a silt /sediment t rap. The silt /sediment t raps should be incorporated in the permanent drainage channels to enhance deposit ion rates. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94. The detailed design of the sand/silt traps should be undertaken by the contractor prior to the commencement of construction ion. Construction works should be programmed to minimize surface excavation works during the rainy seasons (April to September). All exposed earth areas should be completed and vegetated as soon as possible after earthworks have been completed. If excavation of soil cannot be avoided during the rainy season, or at any time of year when rainstorms are likely, exposed slope surfaces should be covered by tarpaulin or other means. All drainage facilities and erosion and sediment control structures should be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly following rainstorms. Deposited silt and grit should be removed regularly and disposed of by spreading evenly over stable, vegetated areas. Measures should be taken to minimise the ingress of site drainage into excavations. If the excavation of trenches in wet periods is necessary, it should be dug and backfilled in short sect ions wherever practicable. Water pumped out from trenches or 	Concern to Address	measures?						
	 foundation excavations should be discharged into storm drains via silt removal facilities. All open stockpiles of construction ion materials (for example, aggregates, sand and fill material) of 								
	should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to								

			Objectives of the	Who to			Imple	ementation S	Status	
EM&A Ref.		Recommended Mitigation Measures	Recommended Measures & Main Concern to Address	implement the measures?	Location of the measure	Contract	Contract 2	Contract 3	Contract 4	Contract 5
		prevent the washing away of construction ion				1	2	5	4	5
		materials, soil, silt or debris into any drainage system.								
	•	Manholes (including newly constructed ones)								
		should always be adequately covered and								
		temporarily sealed so as to prevent silt, construction								
		ion materials or debris being washed into the								
		drainage system and storm runoff being directed								
		into foul sewers.								
	•	Precautions to be taken at any time of year when								
		rainstorms are likely, act ions to be taken when a								
		rainstorm is imminent or forecasted, and act ions to								
		be taken during or after rainstorms are summarized								
		in Appendix A2 of <i>ProPECC PN 1/94</i> . Particular								
		attention should be paid to the control of silty								
		surface runoff during storm events.								
	•	All vehicles and plant should be cleaned before leaving a construction ion site to ensure no earth,								
		mud, debris and the like is deposited by them on								
		roads. An adequately designed and sited wheel								
		washing facilities should be provided at every								
		construction ion site exit where practicable.								
		Wash-water should have sand and silt settled out								
		and removed at least on a weekly basis to ensure the								
		continued efficiency of the process. The sect ion of								
		access road leading to, and exiting from, the								
		wheel-wash bay to the public road should be paved								
		with sufficient back all toward the wheel-wash bay								
		to prevent vehicle tracking of soil and silty water to								
		public roads and rains.								
	•	Oil interceptors should be provided in the drainage								
		system downstream of any oil/fuel pollution								
		sources. The oil interceptors should be emptied and								
		cleaned regularly to prevent the release of oil and								
		grease into the storm water drainage system after								
		accidental spillage. A bypass should be provided for								
		the oil interceptors to prevent flushing during heavy rain.								
		Construction ion solid waste, debris and rubbish on								
	•	site should be collected, handled and disposed of								
		properly to avoid water quality impacts.								L

EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	Implementation Status						
					Contract 1	Contract 2	Contract 3	Contract 4	Contract 5		
	 All fuel tanks and storage areas should be provided with locks and sited on sealed areas, within bun ds of a capacity equal to 110% of the storage capacity of the largest tank to prevent spilled fuel oils from reaching water sensitive receivers nearby. Regular environmental audit on the construction site should be carried out in order to prevent any malpractices. Not ices should be posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the rivers. 										
S6.6.6 and 6.6.7	 Sewage from Workforce Portable chemical toilets should be provided for handling the construction sewage generated by the workforce. Assume that the capacity of the chemical toilets would be 0.4m3 and suck up twice a day under normal practices, around 45 chemical toilets would be required for the whole site at peak hour. And it should be noted that under normal construction periods, less chemical toilets would be needed. In addition, the total number of the chemical toilets would be subject to later detailed design, the capacity of the chemical toilets, and contractor's site practices. Nevertheless, a licensed contractor should be employed to provide appropriate and adequate portable toilets to cater around 37.5 m3/day sewage and be responsible for appropriate disposal and maintenance. Since portable chemical toilets will be provided, no adverse water quality impact from the workforce sewage is anticipated. Notices should be posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the nearby environment during the construction ion phase of the Project . Regular environmental audit on the construction ion site should be conducted in order to provide an effective control of any malpractices and achieve continual improvement of environmental performance on site. It is anticipated that sewage generation during the construction phase of the Project would not cause 	Handling of site sewage	Contractor	All construction sites	V	V	V	V	V		

	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	Implementation Status					
EM&A Ref.					Contract	Contract 2	Contract 3	Contract 4	Contract 5	
	water quality impact after undertaking all required measure									
S6.6.8 and 6.6.9	Accidental Spillage To prevent accidental spillage of chemicals, proper storage and handling facilities should be provided. All the tanks, containers and storage area should be bunded and the locations should be locked as far as possible from the sensitive watercourse and storm drains. The Contractor is required to register as a chemical waste producer if chemical wastes would be generated from the construction ion activities. Storage of chemical waste arising from the construction ion activities should be well managed with suitable labels an d warnings while disposal of those chemical wastes should be comply with the requirement states in Waste Disposal Ordinance (Cap 354) as well as Waste Disposal (Chemical Waste) (General) Regulations.	Prevention of accidental spillage	Contractor	All construction sites	@	V	V	V	V	
S6.6.11- S6.6.14	Groundwater from Contaminated Area The Contractor should apply for a discharge licence under the WPCO through the Regional Office of EPD for groundwater discharge. Prior to the excavation works within these potentially contaminated areas, the groundwater quality should be reviewed during the process of discharge license application. The compliancy to the TM-DSS and the existence of prohibited substance should be confirmed after further SI. If the review results indicated that the groundwater to be generated from the excavation works would be contaminated, the contaminated groundwater should be either properly treated in compliance with TMDSS or properly recharged into the ground. If wastewater treatment is deployed, the wastewater treatment unit shall deploy suitable treatment process (e.g. oil interceptor / activated carbon) to reduce the pollution level to an acceptable standard and remove any prohibited substances (e.g. Petroleum Carbon Ranges (PCRs)). All treated effluent from wastewater treatment plant shall meet the requirements as stated in TM-DSS and should be	Minimize contaminated groundwater impacts	Contractor	All construction sites	N/A	N/A	N/A	N/A	N/A	

EM&A	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the	Implementation Status					
Ref.				measure	Contract	Contract 2	Contract 3	Contract	Contract 5	
	discharged into the foul sewers.									
	If groundwater recharging wells are deployed, recharging wells should be installed as appropriate for recharging the contaminated groundwater back into the ground. The recharging wells should be selected at places where the groundwater quality will not be affected by the recharge operation as indicated in the Sect ion 2.3 of TM-DSS. The baseline groundwater quality shall be determined prior to the select ion of the recharge wells, and submit a working plan (including the laboratory analytical results showing the quality of groundwater at the proposed recharge									
	location(s) as well as the pollutant levels of groundwater to be recharged) to EPD for agreement . Pollution levels of groundwater to be recharged shall not be higher than									
	pollutant levels of ambient groundwater at the recharge well. Prior to recharge, any prohibited substances such as PCRs should be removed as necessary by installing the petrol interceptor.									
	Waste Management (Contr	action Phase)								
\$8.5.2	 <u>Good Site Practice</u> The following good site practices are recommended throughout the construction ion activities: nomination of an approved personnel, such as a site manager, to be responsible for the implementation of good site practices, arrangements for collect ion and effective disposal to an appropriate facility, of all wastes generated at the site; training of site personnel in site cleanliness, appropriate waste management procedures and concepts of waste reduction, reuse and recycling; provision of sufficient waste disposal points and regular collect ion for disposal; appropriate measures to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers; regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors; 	Minimize waste generation during construction	Contractor	All construction sites	V	œ	V	@	V	
\$8.5.2 (6)	The contractor should submit a Waste Management Plan	Minimize waste	Contractor	All construction	v	V	V	女	v	

Z:\Jobs\2016\TCS00864 (CEDD)\600\EM&A Report Submission\Monthly EM&A Report\2022\July 2022\R0579v2.docx

EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	Implementation Status					
					Contract 1	Contract 2	Contract 3	Contract 4	Contract 5	
	(WMP) as part of the Environmental Management Plan (EMP) in accordance with the <i>ETWB TC(W) No. 19/2005</i> for construction ion phase. The EMP should be submit ted to the Engineer for approval. Mitigation measures proposed in the EIA Report and the EM&A Manual should be adopted.	generation during construction		sites						
\$8.5.3	 Waste Reduction Measures Waste reduction is best achieved at the planning and design phase, as well as by ensuring the implementation of good site practices. The following recommendations are proposed to achieve reduction: segregate and store different types of waste in different containers, skip or stockpiles to enhance reuse or recycling o materials and their proper disposal; proper storage and site practices to minimize the potential for damage and contamination of construction ion materials; plan and stock construction ion materials carefully to minimize amount of waste generated and avoid unnecessary generation of waste; sort out demolition debris and excavated materials from demolition works to recover reusable/recyclable port ions (i.e. soil, broken concrete, metal etc.); provide training to workers on the importance of appropriate waste management procedures, including waste reduction, reuse and recycling. 	Reduce waste generation	Contractor	All construction sites where practicable	V	V	V	V	V	
S8.5.5	Storage of Waste The following recommendation should be implemented to minimize the impacts: • waste such as soil should be handled and stored well to ensure secure containment ; • stockpiling area should be provided with covers and water spraying system to prevent materials from wind-blown or being washed away; • different locations should be designated to stockpile each material to enhance reuse;	Minimize waste impacts from storage	Contractor Contractor	All construction sites	V	V	V	V	V	
\$8.5.6	<u>Collection and Transportation of Waste</u> The following recommendation should be implemented to minimize the impacts:	Minimize waste impacts from storage	Contractor	All construction sites	V	@	V	@	@	

	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	Implementation Status					
EM&A Ref.					Contract	Contract 2	Contract 3	Contract 4	Contract 5	
	 remove waste in timely manner; employ the trucks with cover or enclosed containers for waste transportation; obtain relevant waste disposal permits from the appropriate authorities; and disposal of waste should be done at licensed waste disposal facilities. 									
\$8.5.8	 Excavated and C&D Material Wherever practicable, C&D materials should be segregated from other wastes to avoid contamination and ensure acceptability at public filling areas or reclamation sites. The following mitigation measures should be implemented in handling the excavated and C&D materials: maintain temporary stockpiles and reuse excavated fill material for backfilling; carry out on-site sorting; make provisions in the Contract documents to allow and promote the use of recycled aggregates where appropriate; implement a recording system for the amount of waste generated, recycled and disposed of for checking; The recommended C&D materials handling should include: On-site sorting of C&D materials Reuse of C&D materials Use of Standard Formwork and Planning of 	Minimize waste impacts from excavated and C&D materials	Contractor	All construction sites	V	V	V	V	V	
\$8.5.15	Construction Materials purchasing Provision of wheel wash facilities <u>Contaminated Soil</u> As a precaution, it is recommended that standard good site practice should be implemented during the construction phase to minimize any potential exposure to contaminated soils or groundwater. The details of mitigation measures to minimize the potential environmental implications arising from the handling of contaminated materials refer to Land Contamination Section.	Remediate contaminated soil	Contractor	All construction sites where applicable	V	V	N/A	N/A	N/A	
\$8.5.17	Chemical Waste	Control the chemical	Contractor	All construction	V	V	V	V	V	

EM&A Ref.	Recommended Mitigation Measures	Recommended Measures & Main imp	Who to implement the measures?	Location of the measure	Implementation Status					
					Contract 1	Contract 2	Contract 3	Contract 4	Contract 5	
	 If chemical wastes are produced at the construction ion site, the Contractors should register with EPD as chemical waste producer. Chemical wastes should be stored in appropriate containers and collected by a licensed chemical waste Contractor. Chemical wastes (e.g. spent lubricant oil) should be recycled at an appropriate facility as far as possible, while the chemical waste that cannot be recycled should be disposed of at either the Chemical Waste Treatment Cent re, or another licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation. 	waste and ensure proper storage, handling and disposal.		sites						
S8.5.18	 <u>General Waste</u> General refuse should be stored in enclosed bins separately from construction and chemical wastes. Recycling bins should also be placed to encourage recycling. Preferably enclosed and covered areas should be provided for general refuse collect ion and routine cleaning for these areas should also be implemented to keep areas clean. A reputable waste collector should be employed to remove general refuse on a daily basis. 	Minimize production of the general refuse and avoid odour, pest and litter impacts	Contractor	All construction sites	@	V	V	V	@	
S8.5.19	 Sewage The WMP should document the locations and number of portable chemical toilets depending on the number of workers, land availability, site condition and activities. Regularly collect ion by licensed collectors should be arranged to minimize potential environmental impacts. 	Minimize production of sewage impacts	Contractor	All construction sites	V	V	V	V	V	
	Ecology (Contraction Phase									
S. 10.7.2 to 10.7.6	Re-provision of Wooded Area for ecological function at the future Quarry Park.	Compensate for the loss of three woodland patches of a total area of about 1.13ha.	Contractor/ Detailed Design Consultant (qualified botanist / horticulturist / Certified Arborist to supervise the planting).	Northern part of the proposed Quarry Park.	N/A	N/A	N/A	N/A	N/A	

CEDD Contract No. NTE/07/2016 Environmental Team for Development of Anderson Road Quarry Site – Site Formation and Associated Infrastructure Works Monthly Environmental Monitoring & Audit Report (July 2022)

		Objectives of the	Who to			Imple	ementation S	Status	
EM&A Ref.	Recommended Mitigation Measures	Recommended Measures & Main Concern to Address	who to implement the measures?	Location of the measure	Contract	Contract 2	Contract 3	Contract 4	Contract 5
.10.7.10	Construction phase in situ mitigation measures to	Minimize impacts on	Contractor	All construction	V	N/A	V	V	N/A
	minimize impacts on hydrological condition and water	Hydrological		sites					
	quality of hillside watercourses include:	condition and water							
	• Temporary sewerage and drainage will be designed	quality of hillside							
	and installed to collect wastewater and prevent it	watercourses.							
	from entering nearby watercourses;								
	• Proper locations well away from nearby								
	watercourses will be used for temporary storage of								
	materials (i.e. equipment, fill materials, chemicals								
	and fuel) and temporary stockpile of construction								
	debris and spoil, and these will be identified before								
	commencement of works;								
	• To prevent muddy water entering nearby								
	watercourses, work sites close to nearby								
	watercourses will be isolated, using such items as								
	sandbags or silt curtains with lead edge at bot tom								
	and properly supported props. Other protective measures will also be taken to ensure that no								
	pollution or siltation occurs to the water gathering								
	grounds of the works site;								
	 Stockpiling of construction materials, if necessary, 								
	will be properly covered and located away from								
	nearby watercourses;								
	• Erection of temporary geotextile silt fences will be								
	carried out around earth-moving works to trap any								
	sediments and prevent them from entering								
	watercourses;								
l	• Construction debris and spoil will be covered and/or								
	properly disposed as soon as possible to avoid being								
	washed into nearby watercourses;								
	• Exposed soil will be covered as quickly as possible								
	following format ion works, followed, where								
	appropriate, by covering with biodegradable								
	geotextile blanket for erosion control purposes;								
	• Where appropriate, earth-bunding will be carried								
	out of areas where soils have been disturbed or								
	where vegetation has been cleared, to ensure that								
	surface runoff will not move soils off-site;								
	• Construction ion effluent, site run-off and sewage								
	will be probably collected and/or treated.								
	Wastewater from any construction ion site will be								

CEDD Contract No. NTE/07/2016 Environmental Team for Development of Anderson Road Quarry Site – Site Formation and Associated Infrastructure Works Monthly Environmental Monitoring & Audit Report (July 2022)

		Objectives of the	Who to			Imple	ementation S	Status	
EM&A Ref.	Recommended Mitigation Measures	Recommended Measures & Main Concern to Address	implement the measures?	Location of the measure	Contract	Contract 2	Contract 3	Contract 4	Contract 5
S.10.7.11	 minimised via the following in descending order: reuse, recycling and treatment; Proper locations for discharge out lets of wastewater treatment facilities well away from sensitive receivers will be identified and used; Silt traps will be installed at points where drainage from the site enters local watercourses; Appropriate sanitary facilities for on-site workers will be provided; The site boundary will be clearly marked and any works beyond the boundary strictly prohibited, and Regular water monitoring and site audit will be carried out at suitable points. If the monitoring and audit results show that pollution occurs, adequate measures including temporary cessation of works will be considered. Implement an emergency contingency plan during the construction phase and the plan will include, but not be 	Minimize impacts on Hydrological	Contractor	All construction sites	N/A	N/A	N/A	N/A	N/A
	 limited to, the following: Potential emergency situations; Chemicals or hazardous materials used on-site (and their location); Emergency response team; Emergency response procedures; List of emergency telephone hot lines; Locations and types of emergency response equipment, and Training plan and testing for effectiveness. 	condition and water quality of hillside watercourses.		5105					
	Landscape and visual (Con			•				-	
S11.14.23, Table 11.9, CM1 [4]	All existing trees to be retained shall be carefully protected during construction.	Avoid disturbance and protection of the existing trees	Detailed Design Consultant /	The whole project area where applicable	V	V	@	V	@
S11.14.23, Table 11.9, CM2 [3]	Tree Transplantation - Should removal of trees be unavoidable due to construction impacts, trees will be transplanted or felled. Detailed transplanting proposal will be submit ted to relevant government departments for approval in accordance with LAO GN No. 7/2007, ETWB TCW No. 29/2004 and 10/2013. Final locations of transplanted trees shall be agreed prior to commencement of the work.	Minimize landscape impact and retention of landscape resources	Detailed Design Consultant /	Onsite where possible. Otherwise consider offsite locations	*	N/A	N/A	V	V

EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main	Who to implement the	Location of the		Imple	ementation S	Status	
Kel.		Concern to Address	measures?	measure	Contract	Contract	Contract	Contract	Contract 5
\$11.14.23,	Control of operation night -time glare with well-planned	Minimize glare	Contractor/	The whole	V	Z V	3 	4 V	N/A
Table 11.9,	lighting operation system to minimize potential glare	impact to	CEDD	project area	v	v	e	v	11/1
CM3 [4]	impact to adjacent VSRs	adjacent VSRs	CLDD	where					
	impuet to adjacent + bits	udjučeni v bris		applicable					
S11.14.23,	Erection of decorative screen hoarding.	Minimize visual	Contractor/	The whole	N/A	N/A	N/A	N/A	N/A
Table		impact	CEDD	project area					
11.9, CM		-		where					
[4]				applicable					
S11.14.23,	Minimise disturbance and limitation of run-off -	Minimize visual	Contractor/	The whole	V	V	V	V	N/A
Table	temporary structures and construction works should be	impact	CEDD	project area					
11.9, CM5	planned with care to minimize disturbance to adjacent			where					
[2]	landscape, vegetation, natural stream habitats.			applicable					

Legend: V = implemented; x = not implemented; @ = partially implemented; * = pending to be implemented; N/A = not applicable

Appendix M

Complaint Log

Appendix M1 Cumulative Complaint and Summons/ prosecution

Reporting Month	Number of Complaints in Reporting Month	Number of Summons/ Prosecution in Reporting Month
March 2017		0
April 2017	0	0
May 2017	0	0
June 2017	2	0
July 2017	3	0
August 2017	3	0
September 2017	4	0
October 2017	2	0
November 2017	3	0
December 2017	3	0
January 2018	1	0
February 2018	4	0
March 2018	0	0
April 2018 May 2018	2	0
May 2018	1	0
June 2018	<u>1</u> 0	0 0
July 2018		
August 2018	1	0
September 2018	1	0
October 2018	1	0
November 2018	3	0
December 2018	2	0
January 2019	2	0
February 2019	3	0
March 2019	1	0
April 2019	0	0
May 2019	0	0
June 2019	1	0
July 2019	1	0
August 2019	1	0
September 2019	0	0
October 2019	1	0
November 2019	4	0
December 2019	0	0
January 2020	0	0
February 2020	0	0
March 2020	4	0
April 2020	1	0
May 2020	1	0
June 2020	1	0
July 2020	0	0
August 2020	0	0
September 2020	0	0
October 2020	0	0
November 2020	1	0
December 2020	2	0
January 2021	1	0
February 2021	0	0
March 2021	2	0

CEDD Contract No. NTE/07/2016 Environmental Team for Development of Anderson Road Quarry Site – Site Formation and AUES Associated Infrastructure Works Monthly Environmental Monitoring & Audit Report (July 2022)

April 2021	1	0
May 2021	0	0
June 2021	1	0
July 2021	1	0
August 2021	0	0
September 2021	2	0
October 2021	0	0
November 2021	0	0
December 2021	0	0
January 2022	0	0
February 2022	0	0
March 2022	1	0
April 2022	1	0
May 2022	3	0
June 2022	2	0
July 2022	0	0
Overall Total	77	0

Appendix M2 Compla

Complaint Log

Log ref.	Compia	Receive	Complaint Location	Compl ainant	Complaint nature	Channel	Ref. no.	Complaint details	Follow up action	Log ref.	Date of Complaint
1	23-Mar- 17	X lun 17	On Tat Estate	Reside nt of On Tat Estate	Constructio n noise	SPRO hotline	NA	A resident living in On Tat House reported that some night works with noise and flashing caused nuisance to nearby resident after 11:00 pm on 23 March 2017.	According the incident report conducted by the CWSTVJV, demobilization of crawler crane was undertaken on 23 March 2017 11pm and it is TD requirement to carry out demobilization of heavy machine at nighttime. It is considered this complaint was a single incident and would not be happened again in future.		TCS00864/ 16/300/F00 87
2	28-Jul-1 7	28-Jul-1 7	(貢笙唼), On Tot	Reside nt of On Tat Estate	Constructio n noise	SPRO hotline		resident living in the flat on 38/F of Yin Tat	Noise monitoring by Contractor was conducted in Yin Tat House, On Tat Estate, at around 2 pm on 28-Jul-2017. Another noise monitoring was carried out by ET (AUES) and representatives of AECOM and JV in the presence of	by IEC on 9 Aug	TCS00864/ 16/300/F00 60
3	29-Aug- 17				Constructio n noise	SPRO hotline	NA	Mr. Hsu Yau Wai (Tel no.9519 5663) reported that he received complaint from a resident (Ms Cheng) living at Shing Tat House 24/F Room 22 about the noise generated from our site	Noise monitoring was carried out by ET (AUES) and representatives of		TCS00864/ 16/300/F00 81

Log ref.	Date of Compla int	Receive	Complaint Location	Compl ainant	-	Channel	Ref. no.	Complaint details	Follow up action	Log ref.	Date of Complaint
								this week. The noise heard was mainly rock breaking noise from our site.			
4	21-Jun-1 7	$20 \Lambda_{11}\alpha$	Tat Yan House, Po Tat Estate	Reside nt of Po Tat Estate	Constructio n noise	EPD		day time construciton noise of breakers (8am to 6pm)	Since these two complaints were forwarded by CEDD to ET on 31 August 2017 which way after the complaint dates. Investigation would be conducted based on the site information by the Contractor of		TCS00864/ 16/300/F00 93
5	22-Jun-1 7	29-Aug- 17	Tat Yan House, Po	nt of Po Tat	Dust & Constructio n noise		EPD (ref. N08/RE/ 0001942 8-17)	Day time construction noise of breakers (8AM to 6PM). Requested to delay the operating hour of breakers to 10AM or 11AM	information by the Contractor of Contract 1 - NE/2016/01 (CWSTVJV) as well as the observation during weekly site inspection carried out ET during June 2017. In our investigation, CWSTVJV has implemented noise mitigation measures to reduce the noise impact to the nearby resident and the working hour 08:00 to 18:00 did not breach any legal requirement. To eliminate the inconvenience caused to the nearby resident CWSTVJV was advised to further enhance the noise mitigation measures as appropriately.	no comment by IEC on 3 Nov 2017	TCS00864/ 16/300/F00 93

Log ref.	Compia	Receive	Complaint Location	Compl ainant		Channel	Ref. no.	Complaint details	Follow up action	Log ref.	Date of Complaint
6	15-Jul-1 7	$20 \Lambda_{11\alpha}$	Tat Y1 House, Po	Reside nt of Po Tat Estate	Constructio n noise	EPD	EPD (ref.N08 /RE/000 22479-1 7)	Construction noise	CWSTVJV has implemented noise mitigation measures to reduce the noise impact to the nearby resident and the working hour 08:00 to 18:00 did not breach any legal requirement. To eliminate the inconvenience caused to the nearby resident, CWSTVJV was advised to further enhance the noise mitigation measures as appropriately.	comment	
7	28-Jul-1 7		Anderson Road	unkno wn	Dust	EPD	/RE/000		CWSTVJV has implemented dust mitigation measures to eliminate the inconvenience caused to the nearby resident and status of the implementation of dust mitigation		TCS00864/ 16/300/F00 97
8	2-Aug-1 7	$10 \Lambda m\alpha$	Chun Tat House, On Tat Estate	Reside nt of On Tat Estate	Constructio n noise	EPD		Day time construction noise of breakers (8AM to 6PM)	eliminate the inconvenience caused to		TCS00864/ 16/300/F00 98

Log ref.	Compla	Doooiyo	Complaint Location		Complaint nature	Channel	Ref. no.	Complaint details	Follow up action	Log ref.	Date of Complaint
9	19-Sep- 17	19-Sep- 17	U	Reside nt of Sau Mau Ping Estate	Constructio n noise	SPRO hotline	NA	The complainant is living at Sau Mau Ping Estate Sau Nga House (秀雅樓) 38/F. He complained about the noise nuisance recently from August to September especially during night time after 12:00 am, even in Saturdays and Sundays. The noise nuisance caused a great disturbance to him. He made a request to conduct investigation about the source of the noise during night time.	ET has conducted an ad-hoc noise measurement for Leq (30min) on the rooftop of 秀雅樓 and 秀義樓 in the afternoon of 22 September 2017. (Photo 1 & 2) During the course of noise measurement, construction activities such as excavation and breaking were conducted in the Quarry Site. The measurement results taken at both 秀雅樓 and 秀義樓 were 63dB(A) which below the Limit Level under the EM&A Programme.	no comment by IEC on 18 Oct 2017	
10	21-Sep- 17	13-Oct-1 7	Ping Estate Sau Nga House and	Reside nt of Sau Mau Ping Estate	Constructio n noise	EPD	EPD (ref.N08 /RE/000 31074-1 7)	On 21 September 2017, the same complaint further reported that the noise can be heard at both Sau Yee House and Sau Nga House even in daytime and he strongly	ET has conducted an ad-hoc noise measurement for Leq (30min) on the rooftop of 秀雅樓 and 秀義樓 in the afternoon of 22 September 2017. (Photo 1 & 2) During the course of noise measurement, construction activities such as excavation and breaking were conducted in the Quarry Site. The measurement results taken at both 秀雅樓 and 秀義樓 were 63dB(A) which below the Limit Level under the EM&A Programme.		TCS00864/ 16/300/F00 88

Log ref.	Date of Compla int		Complaint Location	Compl ainant		Channel	Ref. no.	Complaint details	Follow up action	Log ref.	Date of Complaint
11	27-Sep- 17	13-Oct-1	Chun Tat House, On Tat Estata	Reside nt of On Tat Estate	Constructio n noise	EPD	/RE/000	but only 1 operating in the afternoon. He requested to shift the operation of the breakers	CWSTVJV has implemented noise mitigation measures to reduce the noise impact to the nearby resident. According to the impact noise monitoring result obtained in September and October 2017, there		TCS00864/ 16/300/F01 06
12	3-Oct-17	13-Oct-1	Chun Tat House, On Tat Estata	Reside nt of On Tat Estate	Constructio n noise	EPD	(ref. N08/RE/	Day time construction noise, the complainant requested using less breaker at one time, erecting taller noise barrier to cover the equipment. In addition, the complainant would like	were no breaches of EM&A requirement. However, to eliminate the inconvenience caused to the nearby resident, CWSTVJV should properly maintain the noise mitigation measures as appropriate. Since the works were carried out within the non-restricted hours, it is considered that the works under the project did not breach the Noise Control Ordinance.		TCS00864/ 16/300/F01 06
13	25-Oct-1 7		Tat Kwai House, Po	Reside nt of Po Tat Estate	Dust	EPD	NA	投訴安達臣道地盤的泥 車落泥,令他達貴樓的 住所受到大塵影響,要 求跟進及回覆	Investigation revealed that CWSTVJV has implemented dust mitigation measures to eliminate the inconvenience caused to the nearby resident. Nevertheless, based on the observation during site inspection on 31 October 2017, CWSTVJV was advised to enhance the dust mitigation measures particularly during dry		TCS00864/ 16/300/F01 00

Log ref.	Compia	Receive	Complaint Location	Compl ainant		Channel	Ref. no.	Complaint details	Follow up action	Log ref.	Date of Complaint
14	6-Nov-1 7		Chun Tat House, On Tat Estato	Reside nt of On Tat Estate	Noise	EPD	NA	安達邨俊達樓居民投訴 石礦場地盤又再於早上 07:45 開始傳出機器不 停揼石的噪音(幾乎每 日在 08:00-19:00 進行 工程),已持續一年,他 全家人受到滋擾。	has implemented noise mitigation measures to reduce the noise impact to	comment	16/300/F01
15	13-Nov- 17	14 - Nov	House, On	Lam	light pollution and noise	SPRO hotline	NA	 智泰樓面向安達臣 地盤方向,有照射燈深 夜時分仍然常開,影響 居民正常睡眠質素,照 成一定的精神壓力。 隔音布未固定,大風 吹過發出極大的聲浪 	To ease the concern by the complaint, CWSTVJV has adjusted the lights to the orientation pointing the ground and that to minimise the nuisance. For the maintenance of noise barrier, CWSTVJV has immediately fixed the noise barrier nearest to On Tai Estate and prolonged the cover area of the noise barrier to reduce the noise impact to the public.	by IEC on 24 Nov 2017	TCS00864/ 16/300/F01 04

Log ref.	Date of Compla int		Complaint Location	Compl ainant		Channel	Ref. no.	Complaint details	Follow up action	Log ref.	Date of Complaint
16	1-Nov-1 7	14-INOV- 17	Nning lat	Reside nt of Po Tat Estate	Noise	EPD	NA	層的投訴人投訴由早上 八時半至下午六時聽到 揼鐵噪音。	As advised by the Contractor, the works that most likely induced the iron hammering noise to Shing Tat House shall be the rock breaking works to the hard rock of the Southeastern side of the Underground Stormwater Retention Tank. CWSTVJV had already deployed the acoustic mat as noise barrier at the site boundary near Shing Tat House. To enhance the noise mitigation measures, CWSTVJV deployed an acoustic mat as noise barrier for the breaking work in order to reduce construction noise affecting the upper floor of On Tat Estate Since the works were carried out within the non-restricted hours, it is considered that the works under the project did not breach the Noise Control Ordinance.		TCS00864/ 16/300/F01 10
17	25-Aug- 17	26-Oct-1 7	Sau Yee House, Sau Mau Ping	Reside nt of Sau Mau Ping Estate	Constructio n Noise	EPD	/RE/000	Night time construction noise of hammering (around 12AM)	As advised by CWSTVJV, there was a CNP (GW-RE0763-17) in force for the subject site for operation of generator and electric submersible water pump for the wastewater treatment plant and it is considered that abovementioned PMEs should not generate significant noise. Moreover, it is confirmed by CWSTVJV and checked against the site diary that no construction activities were carried out after 19:00 at the		TCS00864/ 16/300/F01 14

Log ref.	Date of Compla int		Complaint Location		Complaint nature	Channel	Ref. no.	Complaint details	Follow up action	Log ref.	Date of Complaint
									subject site. Therefore, the complaint about noise nuisance during night time should not be related to the Project.		
18	12-Sep- 17	16 Dot 1	Chun Tat House, On Tat Estate	Reside nt of On Tat Estate	Constructio n Noise	EPD	EPD (ref. N08/RE/ 0002948 9-17)	noise of breakers (8AM	Noise mitigation measures were implemented to reduce the noise impact to the nearby resident. According to the impact noise monitoring result in September 2017, there were no breaches of EM&A requirement. Since the works were carried out within the non-restricted hours, it is considered that the works under the project did not breach the Noise Control Ordinance.		TCS00864/ 16/300/F01 17
19	15-Dec- 17		House	Reside nt of Sau Mau Ping Estate	Constructio n Noise	EPD	NA	House complained suspected construction noise from Anderson Construction Site at restricted hour (7pm to	It is confirmed by CWSTVJV and checked against the site diary that no construction activities were carried out after 19:00 at the subject site. Therefore, the complaint about noise nuisance during night time should not be related to the Project.		TCS00864/ 16/300/F01 18
20	20-Dec- 17		On Tat Estate	Reside nt of On Tat Estate	Dust	EPD	NA	Resident of On Tat Estate complained that the traffic of construction vehicles generated dust problem and arouse air pollution to On Tat Estate. 投訴 安達臣道信和地盤水車 已經壞了十多天,一直	CWSTVJV has implemented dust mitigation measures to eliminate the inconvenience caused to the nearby resident. It is considered that the complaint was an isolated case due to malfunction of water tanker and CWSTVJV has promptly rectified the deficiency. As advised by CWSTVJV, another water tanker will be deployed in mid-January 2018 to enhance the	no comment by IEC on 25 Jan 2018	TCS00864/ 16/300/F01 21

Log ref.	Compia				Complaint nature	Channel	Ref. no.	Complaint details	Follow up action	Log ref.	Date of Complaint
21	28-Dec- 17	10-Jan-1 8	Sau Yee House	Reside nt of Sau Mau Ping Estate	Constructio n Noise	CE's office	NA	邨,投訴安達臣道石礦 場大地盤,地盤大惠 之下。, 物有大時, 小慶空氣環, 一般 一, 一, 一, 一, 一, 一, 一, 一, 一, 一, 一, 一, 一,		no comment by IEC on 8 Feb 2018	TCS00864/ 16/300/F01 29

Log ref.	Date of Compla int			Complaint nature	Channel	Ref. no.	Complaint details	Follow up action	Log ref.	Date of Complaint
							表示晚上七時後不會再 進行工程。Thomas 指石 礦場經常在晚上八至十 二時,或凌晨時份發出 巨響,對附近居民已造 成很大的滋擾,要求相 關部門儘快作出跟進及 回覆。			
22	15-Jan-1 8	15-Jan-1 8	Chun Tat House	Constructio n Noise	SPRO mobile		construction noise of breaking rock for a long time and strongly requested to know exactly when will be the completion date of the breaking rock part of works opposite to Chun Tat House. She said we should do more on the mitigation measures because our site is very close to the residents	EM&A requirement. However, to	by IEC on 8 Feb 2018	TCS00864/ 16/300/F01 30

Log ref.	Date of Compla int	Receive	Complaint Location	Compl ainant		Channel	Ref. no.	Complaint details	Follow up action	Log ref.	Date of Complaint
23	1-Feb-1 8	2-Feb-1 8	Chi Tai House of On Tai Estate	Estate	Constructio n Noise	SPRO hotline	NA	"智泰對出,白天噪音過 大,可否加裝隔音板? 高層受影響"	was 65dB(A) which below the Limit	no comment by IEC on 22 Feb 2018	TCS00864/ 16/300/F01 37
24	1-Feb-1 8	2-Feb-1	Shing Tat House of On Tat Estate	House	Constructio n Noise	SPRO hotline	NA	Mr. Hsu reported that some disturbing noise was heard after 6:00 pm from the site near Shing Tat House of On Tat Estate.	AECOM has liaised with Mr. Hsu on 2 February 2018 for the complaint matter and he reported to AECOM that the noise was generated until 7:00 pm on 1 February 2018. 3. As advised by Contractor of Contract 1, breaking works at USRT area which opposite to Shing Tat House was only carried out from 8:00 to 18:00. However, rock breaking at System A was extended to 19:00 on 1 February 2018. As noise mitigation measures, noise barriers were erected for the works area. Further to the complaint case, CWSTVJV would seek for other quiet work method such as using drilling		TCS00864/ 16/300/F01 40

Log ref.	Date of Compla int	Receive	Complaint Location	Compl ainant	Complaint nature	Channel	Ref. no.	Complaint details	Follow up action	Log ref.	Date of Complaint
									machine to reduce noise level and speed up the rock breaking process, so that to reduce the noise intensity level and the duration of exposure.		
25	28-Feb- 18	28-Feb- 18	Shing Tat House of On Tat Estate	nt of	Constructio n Noise	EPD	NA	安達邨誠達樓居民,投 訴人是返夜班,一年半 以來長期受對出地盤日 間揼石仔噪音滋擾,由 於單位與地盤太近,堅 持環保署跟進及回覆如 何處理及減低噪音,他 亦要求知道何日完工.	Breaking works at Underground Stormwater Retention Tank area which opposite to Shing Tat House was carried out from 8:00 to 18:00. The Contractor has implemented noise mitigation measures to reduce the noise impact to the nearby resident. It was advised that the rock breaking		TCS00864/ 16/300/F01 43
26	11-Apr- 18	12-Apr- 18	Him Tat House of On Tat Estate	nt of	Constructio n Noise	SPRO mobile	NA	Mr. Hui Yau Wai reported that the noise irritation was becoming more severe recently and asked about the completion date of the works close to Him Tat House. The resident suspected that the noise	In our investigation, since construction noise was generating from other construction site next to Him Tat House, it is considered that the complaint is due to cumulative noise generated by both construction sites. However, CWSTVJV should properly provide the noise mitigation measures at works area in System B to minimize the noise impact to the resident nearby.		TCS00864/ 16/300/F01 60b

Log ref.	Compia	Receive	Complaint Location		Complaint nature	Channel	Ref. no.	Complaint details	Follow up action	Log ref.	Date of Complaint
									As advised by CWSTVJV on 20 April 2018, noise barrier was being erected at works area in System B as noise mitigation measures. According to the site photo, it is considered that the coverage of noise barrier is not sufficient and CWSTVJV should enhance the measure as far as practicable. The implementation of noise mitigation measures will be kept in view in subsequent site inspection.		
27	25-Apr- 18	7-May-1 8	Junction of Hiu Kwong Street and Hiu Ming Street	name	Constructio n Noise	EPD		This case is considered a Programme.	s an enquiry and no investigation is req	uired under	the EM&A
28	18-May- 18	24-May-	Anderson Road Quarry Site	Undisc losed	Constructio n Noise	EPD	NA	投訴人指安達臣道石礦 場地盤(NE/2016/01)在 入夜 19:00 後仍見到有 長臂喉工程車在運作, 及持續產生大噪音及閃 燈,非常擾民。	As advised by CWSTVJV and confirmed by RE/AECOM, there were no construction activities carried out after 19:00 and concreting was completed before 19:00. It is concluded that the retracting process is not a general construction work using Powered Mechanical Equipment and complaint was an isolated case due to misunderstanding of the site operation. To prevent similar incidents in future,		TCS00864/ 16/300/F01 74b

Log ref.	Date of Compla int	Receive	-	-	Complaint nature	Channel	Ref. no.	Complaint details	Follow up action	Log ref.	Date of Complaint
									CWSTVJV has recommended several mitigation measures.		
29	25-Jun-1 8	19-Jul-1 8	Pedestrian Connectivel y E8 under		Waste Manageme nt	CEDD	NA	A public complaint was referred from CEDD on 4 July 2018 regarding accumulation of dead leaves and branches found at slope (GLA-TNK 2458) near Hiu Yuk Path on 25 Juna 2018 Tho	CW-CMGC-JV has immediately clear the dead leaves and maintain the site cleanliness. Since the construction work has not yet commenced and the dead leaves and overgrown branches were not related project works, it is considered that the complaint is not valid the project.		TCS00864/ 16/300/F01 89b
30	22-Aug- 18	29-Aug- 18	Hong Wah	Reside nt of Hong Wah Court	Constructio n Noise	1823 Hotline	NA	1625 熱線投 訴,指馬游塘區堆填區 往將軍澳方向行車入口 因配合項目需要而進行 移除山坡工程,但其鑽 地鑿石的噪音嚴重影響 藍田康雅苑*居民,要求 有關部門跟進。*註: 投訴人於 2018 年 8 月	to reduce the inconvenience caused to the nearby resident, Kwan On should properly maintain the noise mitigation measures as appropriate, such as maintain good site practice including intermittent use of machine and plant and Sequencing operation of construction plant equipment. Since the works were carried out within the non-restricted hours, it is considered that the works under the project did not breach the Noise Control Ordinance.		TCS00864/ 16/300/F01 96a

Log ref.	Date of Compla int	Receive	Complaint Location	Compl ainant	-	Channel	Ref. no.	Complaint details	Follow up action	Log ref.	Date of Complaint
31	28-Aug- 18	31-Jul-1	Anderson Road Quarry Site	Undisc losed	Constructio n Noise	EPD	ΝA	安達邨誠達樓後面地 盤,2月26日晚,晚上 7時後,還在落石屎, 相片拍攝時間大概晚上 9時半,一直至晚上十 一時五十分還有工程車 在地盤行駛。影響居民 休息。	conducted during restricted hours with valid CNP were completed at 23:00. It is considered that the complaint was not valid to the Project.	by IEC on	TCS00864/ 16/300/F01 97a
32	6-Sep-1 8	-	Tsui Yeung House	0.0111	Constructio n Noise	Verbal	NA	Mr. CHENG Keung-fung complained that the contractor has conducted the noisy works such as rock excavation beyond the normal hours.	Kwan On has implemented noise mitigation measures to reduce the noise impact to the nearby resident. As advised by Kwan On, the rock breaking works shall tentatively be completed by end of December 2018 and the mitigation measures will implemented continuously during slope construction work and the slope	by IEC on	TCS00864/ 16/300/F02 01

Log ref.	Date of Compla int	Receive	Complaint Location		Complaint nature	Channel	Ref. no.	Complaint details	Follow up action	Log ref.	Date of Complaint
33	24-Oct-1 8	25-Oct-1 8	E3		Constructio n Noise	Whatsap p Message	NA	KTDC member, Ms. Ann So, complaining the noise of the breaker at E3	2018. The rock breaking works shall tentatively be completed to the road level in the middle of November 2018 and the mitigation measures will	by IEC on	TCS00864/ 16/300/F02 09a
34	12-Nov- 18	$ \mathbf{A} - \mathbf{N} \mathbf{O} \mathbf{V} -$	Anderson Road Quarry Site	referre	Constructio n Noise	SPRO Hotline	NA	Mr. Hui reported that he received complaint from a resident living in Ching Tat House about noise nuisance recently. Mr. Hui asked if project team can arrange some noise monitoring to check the noise level at the concerned flat or the same level at Ching Tat House.	The SPRO contacted Mr. Hiu and explained to him about the purpose and benefits of the tunnel to the residents nearby and the expected date of completion of the tunnel will be earlier than 2020. Moreover, the noise mitigation measures had implemented to reduce the noise level effectively and the work progress will be closely updated to nearby stakeholders to enhance communication. Mr. Hiu satisfied with the reply from SPRO and		TCS00864/ 16/300/F02 22a

Log ref.	Compia	Receive	Complaint Location	Complaint nature	Channel	Ref. no.	Complaint details	Follow up action	Log ref.	Date of Complaint
								conducted within approved normal hours with implementation of noise mitigation measures, there were no breaches of legislative requirement.		
35	14-Nov- 18	14-Nov- 18	Anderson Road Quarry Site	Light and Noise	EPD	NA	凌晨1時,地盤仍有大 光燈正射民居和機器移 動聲音,影響附近居民 睡眠及違反環保條例。	CWSTVJV immediately adjusted the angle and brightness of the lighting to minimize the nuisance to the resident nearby. In response to the complaint, CWSTVJV immediate carried out remedial action to minimize the nuisance to the public. It was considered that complaint for noise generated by machine moving was an isolated case. CWSTVJV was reminded to closely monitor the plant use and sequence of night work and do not to violate CNP conditions.	no comment by IEC on 3 Jan 2019	TCS00864/ 16/300/F02 23a
36	13-Nov- 18	14 - Nov	Anderson Road Quarry Site	Noise and dust	1823		Complainant requested to postpone the starting time of construction work at project site and also to solve the problem of construction noise and dust.	In our investigation, acoustic barrier and site hoarding were in place along the works area. No noticeable noise and dust impact was observed during the site inspection. As advised by CWSTVJV, the normal working hour of the construction site is 8am to 6pm and there were no violation of the relevant regulations.	no comment by IEC on 18 Feb 2019	TCS00864/ 16/300/F02 24

Log ref.	Compla	Receive	Complaint Location	Compl ainant		Channel	Ref. no.	Complaint details	Follow up action	Log ref.	Date of Complaint
									completed by ET without comment from IEC.		
37	9-Dec-1 8	12-Dec- 18	Anderson Road Quarry Site		Constructio n noise	1823	2-49279 07305	affecting the resident at Hau Tat House, On Tat	there was no site activities undertaken at site access road as concerned by the complainant. The construction work carried out on Sunday was fully compliance with the CNP requirement. In response to the complaint, CWSTVJV was reminded to closely monitor the plant use and sequence of night work and do not to violate CNP conditions	no comment by IEC on 10 Jan 2019	TCS00864/ 16/300/F02 30a
38	19-Dec- 18	27-Dec- 18	Road		Constructio n noise	1823	2-49480 74127	to CEDD on 27 December 2018, which the complainant complained that noise barriers near the round-about at On Sau Road were not enough, and construction noise generated from the project site was affecting the resident at Ming Tai House, On Tai Estate.	Joint site inspection was carried out on 3 January 2019 the status of implemented mitigation measures provided by CWSTVJV was inspected. It was observed that noise mitigation measures including temporary noise barrier, acoustic mat and wrapped by acoustic materials are implemented on site. However, CWSTVJV was advised to extend the coverage of noise barrier as far as practicable and fully enclose the concerned works area which has been completed on 15 January 2019. Since the works were	no comment by IEC on 31 Jan 2019	TCS00864/ 16/300/F02 37a

Log ref.	Compia	Receive	Complaint Location	Compl ainant		Channel	Ref. no.	Complaint details	Follow up action	Log ref.	Date of Complaint
								actions from related department as soon as	carried out within the non-restricted hours, it is considered that the works under the project did not breach the Noise Control Ordinance.		
39	24-Jan-1 9	29-Jan-1 9	Anderson Road Quarry Site	Undisc losed	wastewater	Referred from DSD	NA	DSD has referred a case to CEDD on 24 January 2019 regarding suspended illegal discharge of cementitious slurry from construction site of Development of ARQ Site to nearby Public Stormwater Drainage System.	on the downstream has been accumulated over time particularly by rainstorm as well as routine discharge from construction site. As remedial action, CWSTVJV immediately clean the offected area where accessible	no comment by IEC on 29 Mar 2019	TCS00864/ 16/300/F02 48a
40	30-Jan-1 9	30-lan-l	Anderson Road Quarry Site	Undisc losed	noise	SPRO hotline	NA	A public complaint was received by SPRO hotline on 30 January 2019 regarding the construction noise near Ma Yau Tong Village and requested to add noise barrier as soon as possible.	In our investigation, CWSTVJV had provided the noise mitigation measures to minimize the noise impact to the resident nearby. The impact monitoring result obtained at Ma Yau Tong Village revealed that the construction noise were within acceptable level. Since the works were conducted within approved normal hours with implementation of noise and dust mitigation measures,		TCS00864/ 16/300/F02 49a

Log ref.	Compia	B acaiya	Complaint Location	Compl ainant		Channel	Ref. no.	Complaint details	Follow up action	Log ref.	Date of Complaint
41	15-Feb- 19	25-Feb-	Pood	Undisc losed	noise	1823	2-49480 74127	1823 has referred a case to CEDD on 15 February 2019, which the complainant complained about the construction noise generated from the CEDD site near 法源寺 (Ma Yau Tong Village). The complainant requested for the details of works and the completion date, the complainant also requested CEDD to use other construction methods in order to re	In response to the complainant, CWSTVJV has proposed alterative quiet work method to alleviate the noise impact to the public. They will schedule the noisy activities to be carried out after 10am as far as practicable to minimize the impact to resident nearby, given that not affecting the site progress. Moreover, the coverage of acoustic barriers will be extended in view of the works programme.	by IEC on	TCS00864/ 16/300/F02 51a
42	21-Feb- 19	25-Feb-	Road	Undisc losed	noise	EPD	NA	Hong House complained that the noise from the Anderson Road Quarry construction site has gotten worse. In addition, sometimes even after midnight there are noise coming from the site. With the echo produces from the	In our investigation, CWSTVJV has implemented noise mitigation measures to reduce the noise impact to the nearby resident. However, to eliminate the inconvenience caused to the nearby resident, CWSTVJV should properly maintain the noise mitigation measures as appropriate, such as maintain good site practices such as intermittent use of machine and plant and Sequencing operation of construction plant equipment. Since		TCS00864/ 16/300/F02 50

LOg	Compia	Receive	Complaint Location		Complaint nature	Channel	Ref. no.	Complaint details	Follow up action	Log ref.	Date of Complaint
								big disturbance to the residence in the area. The complainant	the works were carried out within the non-restricted hours, it is considered that the works under the project did not breach the Noise Control Ordinance.erway by ET.		
43	21-Feb- 19	26-Feb-	Road	Undisc losed	noise	received by DEVB and referred to CEDD	NA	A public complaint was received by DEVB and referred to CEDD on 25 February 2019 regarding on the noise generated from the construction works of the Anderson Road Quarry Site affecting a local resident residing at the Anderson Road Squatter Area	and breaker head wrapped with acoustic material were implemented continually. Alterative quiet work method was adopted such as drilling the hard rock before the breaking work to reduce the breaking duration. In our investigation, CWSTVJV had enhanced the noise mitigation		TCS00864/ 16/300/F02 52a

Log ref.	Date of Compla int	Receive	Complaint Location	Compl ainant	-	Channel	Ref. no.	Complaint details	Follow up action	Log ref.	Date of Complaint
44	1-Mar-1 9	26-Feb- 19	E3 of Contract 2	Undisc losed	noise	CEDD	NA	A complaint is forwarded by CEDD which was received by KTDC member Mr CHENG Keung Fung from the residents of Tsui Yeung House(翠樹 樓) about the noise nuisance generated and the working time up to 7:00 pm from the rock excavation of E3 lift tower. Follow up action is requested.		by IEC on	TCS00864/ 16/300/F02 64
45	16-Jun-1 9	18-Jun-1 o	Anderson Road Quarry Site	Undisc losed	noise	EPD	NA	CEDD on 17 June 2019 regarding the construction noise heard at On Tat Estate on Sunday.	the construction site on the concerned day. Since the work did not involve the use of Powered Mechanical Equipment (PME), it would not violate	by IEC on	TCS00864/ 16/300/F03 01a

Log ref.	Date of Compla int	Receive	Complaint Location	Compl ainant		Channel	Ref. no.	Complaint details	Follow up action	Log ref.	Date of Complaint
46	12-Jul-1 9	15-Jul-1	Road	Undisc losed	dust	EPD	NA	On 12 July 2019, a complaint was received by EPD regarding the dust impact to the residents at Po Tat Estate and On Tat Estate due to the dust emission at Anderson Road Quarry site.	In our investigation, CWSTVJV has implemented dust mitigation measures to eliminate the inconvenience caused to the nearby resident and status of implementation of dust mitigation measures was considered effective based on the site observation. Moreover, there was mostly rainy day throughout June and July 2019 in typical rainy season in Hong Kong and the dust impact was considered not significant in addition to the dust mitigation measures implemented provided by the Contractor. Nevertheless, the ET will closely monitor the environmental performance and dust mitigation measures in subsequent site inspection. The IR is under reviewed by IEC.		
47	6-Aug-1 9	14-Aug- 19		翠屏 (北)邨 物業 服務 辦事	Noise	1823	NA	received by 1823 on 6 August 2019 relating to the noise generated from construction work at the lift tower site (Slope E3) at Hui Ming Street from the residents of Tsui Yeung House. The complainant expressed that the construction	In our investigation, Kwan On has implemented noise mitigation measures to reduce the noise impact to the nearby resident. Nevertheless, since the construction site is close to the residential area, adequate noise mitigation measures shall be provided to reduce to noise nuisance to the public. It is concluded that the complaint was valid to the contract. As the works were carried out within the non-restricted hours, it is	no comment by IEC on 16 Sep 2019	TCS00864/ 16/300/F03 10a

L0g ref	Date of Compla int			Complaint nature	Channel	Ref. no.	Complaint details	Follow up action	Log ref.	Date of Complaint
48	15-Oct-1 9	9	Work Area Portion 6 (Tseung Kwan O Tunnel Bus-Bus Interchange Pedestrian Connectivit y Facilities E12)	Noise	1823	NA	received by 1823 on 15 October 2019 relating to the noise generated from construction work at Tseung Kwan O Tunnel Bus to Bus Interchange Pedestrian Connectivity Facilities E12. The complainant expressed that the construction noise was generated from breaking work at 8:20 am without noise mitigation measure,	In our investigation, Kwan On has implemented noise mitigation measures to reduce the noise impact to the nearby resident. Nevertheless, since the construction site is close to the residential area, adequate noise mitigation measures shall be provided to reduce to noise nuisance to the public. As the works were carried out within the non-restricted hours, it is considered that the works under the contract did not breach the Noise Control Ordinance. Kwan On was reminded to implement the mitigation measures as far as practicable as recommended in the EM&A Programme.		TCS00864/ 16/300/F03 26a

Log ref.	Date of Compla int	Receive	Complaint Location	Compl ainant		Channel	Ref. no.	Complaint details	Follow up action	Log ref.	Date of Complaint
49	5-Nov-1 9	11-Nov- 19	Work Area Portion 2&3 (lift tower constructio n work at Hiu Kwong Street)	NA	Noise	EPD	NA	A public complaint was received by EPD relating to the noise generated from breaking work of lift tower construction work at Hiu Kwong Street (Portion 2&3).	the residential area, adequate noise mitigation measures shall be provided to reduce to noise nuisance to the public. As the works were carried out within the non-restricted hours, it is considered that the works under the	no comment by IEC on 27 Dec 2019	TCS00864/ 16/300/F03 32a
50	7-Nov-1 9		Work Area Portion 6	Mr. Cheng	Noise	EPD	NA	寶達邨居民鄭先生,表 示將軍澳隧道出口工 程,日間噪音嚴重, 8:30-17:00,幾部幾同 時開動,而且無防音欄, 之前是有,現要求環保 署向對方反映改善	In our investigation, Kwan On has implemented noise mitigation measures to reduce the noise impact to the nearby resident. Nevertheless, since the construction site is close to the residential area, adequate noise mitigation measures shall be provided	no comment by IEC on 27 Dec 2019	TCS00864/ 16/300/F03 33a

Log ref.	Date of Compla int	Receive	Complaint Location	Compl ainant		Channel	Ref. no.	Complaint details	Follow up action	Log ref.	Date of Complaint
									measures as far as practicable as recommended in the EM&A Programme.		
51	10-Nov- 19	12-Nov- 19		Undisc losed	Noise	EPD	NA	投訴人為馬游塘村居 民,自本年初寶林路開 展掘隧道工程,每天噪 音不斷,由8至6,由 於欠缺遮擋,聲音直向 4至22號村屋,將來通 車,相信噪音不只8-6, 現懇請環保署為本村居 民正式評估,並向政府 提出村民困擾,考慮盡 快設置隔音屏。 On 11 November 2019 寶琳路近馬游塘村開掘 隧道的工程地盤每日	In our investigation, CWSTVJV had implemented the noise mitigation measures to reduce to noise impact to the public. Since the works were conducted within approved normal hours with implementation of noise mitigation measures, there were no violation of legislative requirement. For the complainant's concern on the operation noise after commencement of the project, it is out of the scope of the EM&A programme and the relevant department will follow up the concern.		TCS00864/ 16/300/F03 37

L0g ref	Date of Compla int	Receive	Complaint Location		Complaint nature	Channel	Ref. no.	Complaint details	Follow up action	Log ref.	Date of Complaint
52	11-Nov- 19		Estate Ancillary Facilities Building on On Sau Poad		Noise	1823	2-59763	same complainant reported on the noise nuisance near On Sau Road and On Yan Street. He suggested to speed up the noise making works by intensely concentrate the	implemented the noise mitigation measures to reduce to noise impact to the public. However, in response to the complaint, the Contractor was advised to enhance the performance of the temporary noise barriers such as increase the coverage of the noise barrier. Since the works were conducted within normal working hours with implementation of noise mitigation measures, there were no breaches of legislative requirement.	no comment by IEC on 27 Dec 2019	TCS00864/ 16/300/F03 38a
53	5-Mar-2 0	6-Mar-2 0	Road Quarry Site	Reside nt of On Tat Estate	Noico	EPD	NA	道工程在安達臣的工 程,施工至今嘈音間中 改善,最近又有嘈音出 現,仲係重低音,希望 能加裝隔音設備,工程	measures to reduce to noise impact to the public. In response to the complaint CWSTVIV had	by IEC on 1 Apr 2020	TCS00864/ 16/300/F03 57a

LOg	Date of Compla int	Receive	Complaint Location	Compl ainant		Channel	Ref. no.	Complaint details	Follow up action	Log ref.	Date of Complaint
								complaint was received by EPD on 5 March			
54	4-Mar-2 0	17-Mar- 20	Near Hiu Ming Street Playground (E8)	Undisc losed	Noise	1823	ref. 3-62832 37171	投訴人投訴有關秀茂坪 邨秀安樓附近有兩個地 盤, 地盤由星期一至 五,每天早上約9AM-5 PM 持續不斷發出強烈 的嘈音,投訴人表示地 盤是在曉明街藍球場旁 邊的位置(投訴人未能 告知確實街號),因此 要求部門盡快回覆及告 知有關情況。Apublic complaint was received by 1823 on 4 March 2020 regarding the construction noise.	by the works under the Project. Since the works were conducted within approved normal hours with implementation of noise mitigation measures, there were no violation of legislative requirement.	comment by IEC on 15 Apr	TCS00864/ 16/300/F03 59a

Log ref.	Compla	Decoive	Complaint Location		Complaint nature	Channel	Ref. no.	Complaint details	Follow up action	Log ref.	Date of Complaint
								were two construction sites near Hiu Ming Street Playground generated construction noise continuously during 9AM to 5PM on weekdays.			
55	23-Mar- 20	23-Mar-	Near Lin Tak Road (E11)	Undisc losed	Water Quality	Project hotline	NA	經時被濺濕及弄污,請問有何措施改善問題? A public complaint was received by project hotline on 23 March 2020 regarding overflow of muddy water from the	In our investigation, the wheel washing facilities at site exit of E11 is one of the dust quality mitigation measures conducted by CW-CMGCJV and corresponding measure was implemented to prevent overflow of wastewater out of the site. In our recent site inspection, no outflow of muddy water from the site was observed and the condition of concerned Lin Tak Road was satisfactory. It is considered that the complaint was unlikely due to the project.	no comment	TCS00864/ 16/300/F03 60a

LOg ref	Date of Compla int	Receive	Complaint Location		Complaint nature	Channel	Ref. no.	Complaint details	Follow up action	Log ref.	Date of Complaint
56	17-Mar- 20	19-Mar- 20	Anderson Road Quarry Site		Noiso	Project hotline	NA	發展用地工程噪音持續 兩年,要求工程團隊下 周派員到有關單位視 察,並採取可行的噪音 緩解措施。許有為區議 員要求陪同視察。 A public complaint was received by hotline on 17 March 2020 regarding the construction noise generated from the Anderson Road Quarry Site. The complainant mentioned that the construction noise generated from the Anderson Road Quarry Site had been continued for two years.	to the nearby residents, CW-CMGCJV was advised to further adopt good practices on mitigating construction noise to reduce the noise impact to the nearby residents. 5. Since the works were carried out within the non-restricted hours, it is considered that the works under the contract did not breach the Noise Control Ordinance. Nevertheless, as the construction site is close to the residential area, CW-CMGCJV was reminded to implement the mitigation measures as far as practicable as recommended in the EM&A Programme.	no comment by IEC on 11 May 2020	TCS00864/ 16/300/F03 61a
57	1-Apr-2 0	20-Apr- 20	Work Area Portion 2	Undisc losed	Noise	1823	NA	觀塘秀茂坪紀念公園傍 及曉明街的地盤,共兩 個地盤,是地政總署管 轄的。投訴人表示已被 工程噪音滋擾了兩年	In our investigation, Kwan On has implemented noise mitigation measures to reduce the noise impact to the nearby resident. Nevertheless, since the construction site is close to the residential area, adequate noise mitigation measures shall be provided	by IEC on	TCS00864/ 16/300/F03 66a

Log ref.	Date of Compla int	Complaint Location	Compl ainant	Complaint nature	Channel	Ref. no.	Complaint details	Follow up action	Log ref.	Date of Complaint
							訴人不明白為何工程頭 尾要 3 年多時間.要求 地政總署直接以電郵回 覆工程長的原因及有沒 有措施解決地盤發出的 噪 音 。 A public complaint was received by 1823 on 1 April 2020 and subsequently	considered that the works under the contract did not breach the Noise Control Ordinance. Kwan On was reminded to implement the mitigation measures as far as practicable as recommended in the EM&A Programme.		

Log ref.	Date of Compla int	Dogoivo	Complaint Location	Compl ainant		Channel	Ref. no.	Complaint details	Follow up action	Log ref.	Date of Complaint
58	11-May- 20		Work Area Portion 2	Undisc losed	Noise	Project hotline	NA	was received by Project Hotline on 11 May 2020 regarding the noise generated from rock breaking work from a construction site opposite to Tsui Yeung House, which affecting his mother's health. The complainant enquired about the completion date of	acceptable level after the additional noise mitigation measures in place.	no comment by IEC on 28 May 2020	TCS00864/ 16/300/F03 70a

LOG	Compla	Receive	Complaint Location		Complaint nature	Channel	Ref. no.	Complaint details	Follow up action	Log ref.	Date of Complaint
59	18-Jun-2 0		Anderson Road Quarry Site, System B	Undisc losed	Noise	EPD	NA	near Hau Tat House. The complainant understood that the Contractor could carry out construction works, other than percussive piling, before 7pm under the CNP and hoped that the Contractor could arrange the noisy construction works to be carried out before 6pm.	In our investigation, the Contractor has implemented noise mitigation measures to reduce the noise impact and nuisance to the public. Since the works were carried out within the non-restricted hours, it is considered that the works under the contract did not breach the Noise Control Ordinance. Nevertheless, as the construction site is close to the residential area, the Contractor was reminded to implement the mitigation measures as far as practicable as	no comment by IEC on	TCS00864/ 16/300/F03 91a

Log ref.	Date of Compla int	Doooiyo	Complaint Location		Complaint nature	Channel	Ref. no.	Complaint details	Follow up action	Log ref.	Date of Complaint
59#	23-Jul-2 0	24-Jul-2 0	Ouarry Site		Noise	EPD	NA	construction noise generated from the use of PME at Anderson Road Quarry Site near On Tat Estate at 6:30am (restricted hours). He/ she requested relevant	In our investigation, CWSTVJV had restricted the use of PME before 7am. There was no construction work and use of PME during the restricted hours. Since the works were conducted within approved normal hours with implementation of noise mitigation measures, there were no violation of legislative requirement. Nevertheless, as the construction site is close to the residential area, CWSTVJV was reminded to implement the mitigation measures as far as practicable as recommended in the EM&A Programme	by IEC on 25 August	TCS00864/ 16/300/F04 01
60	14-Nov- 20	18-Nov-	Near Hiu Ming Street Playground (E8)	Undisc	Noise	1823	NA	piling works at Hiu	In our investigation, there was no noise impact was observed and anticipated in Hiu Ming Street based on the site activities and our inspection record. Since the works were conducted within approved normal hours with implementation of noise mitigation measures, there were no violation of legislative requirement		

L.											1	
	61	4-Dec-2 0	7-Dec-2 0		Undisc losed	Dust	EPD	NA	A public complaint was received by EPD on 4 December 2020 regarding the dust impact. The complainant mentioned that the construction site opposite to On Tai Estate had dust emission problem due to lack of water spraying. He/she requested relevant department to follow up	to eliminate the inconvenience caused	by IEC on	TCS00864/ 16/300/F04 34
	62	3-Dec-2 0	7-Dec-2 0	Village	Undisc losed			3-65741 41017	A public complaint was received by 1823 and EPD on 14 November 2020 regarding the construction dust and noise impact arising from the project. There were acoustic mats erected on the slope of East Portal, however, the complainant enquired about effectiveness of the noise barriers with dozens of 15 cm "X"-shaped cuts. Moreover, there was	complainant, as enhancement noise measure, the Contractor extended the	by IEC on 4 January	TCS00864/ 16/300/F04 35

lack of water sprinkling on the site and fugitive

Channel Ref. no. Complaint details

CEDD Contract No. NTE/07/2016 Environmental Team for Development of Anderson Road Quarry Site – Site Formation and Associated Infrastructure Works Monthly Environmental Monitoring & Audit Report (July 2022)

Complaint Compl Complaint

ainant nature

Location

Date of Date of

Compla Receive

d by ET

Log

ref.

int

Date of

Complaint

Log ref.

Follow up action

Log ref.	Compia	Receive		Compl ainant	Complaint nature	Channel	Ref. no.	Complaint details	Follow up action	Log ref.	Date of Complaint
63	7-Jan-21	7-Jan-21	System B	Reside nt of Yan Tat House	Noise	Project hotline	NA	department to follow up.	and nuisance to the public.6. Since the works were carried out within the non-restricted hours, it is considered that the works under the contract did not breach the Noise Control Ordinance. Nevertheless, as the construction site is close to the residential area, the Contractor was reminded to implement the mitigation measures as far as practicable as recommended in the EM&A Programme.		TCS00864/ 16/300/F04 41
64	18-Mar- 21		Anderson Road Quarry Site (between On Tat Estate and On Tai Estate)	Undisc losed	Noise	1823 & EPD	NA	received by 1823 and referred by EPD on 18 March 2021 regarding the construction noise generated from construction works at Anderson Road Quarry Site between On Tat Estate and On Tai Estate. The complainant expressed	In our investigation, CWSTVJV had restricted the use of PME before 7am. There was no construction work and use of PME during the restricted hours and there should not be any non-compliance of Noise Control Ordinance. Nevertheless, as the construction site is close to the residential area, CWSTVJV was reminded to implement the mitigation measures as far as practicable as recommended in the EM&A Programme		TCS00864/ 16/300/F04 54

Log ref.	Date of Compla int	Receive	Complaint Location		Complaint nature	Channel	Ref. no.	Complaint details	Follow up action	Log ref.	Date of Complaint
								of the site started from 6:45am everyday which causing noise disturbance to the nearby resident and he/ she requested relevant department to follow up			
65	1-Apr-2 1	1-Apr-2 1	Constructio n site near SKH St. John's Tsang Shiu Tim Primary School (System B under Contract 3)	Undisc losed	Noise	EPD	NA	A complaint was received by EPD and referred to CEDD on 1 April 2021 regarding the construction noise. The complainant mentioned that piling work was conducted at construction site near SKH St. John's Tsang Shiu Tim Primary School in recent week which generated noise problem. Moreover, there were no noise mitigation measures provided in the construction site	In our investigation, the Contractor has implemented noise mitigation measures to reduce the noise impact and nuisance to the public. Since the works were carried out within the non-restricted hours, it is considered that the works under the contract did not breach the Noise Control Ordinance. Moreover, the Contractor has adopted noise mitigation measures to minimise noise impact to the public. Since the construction site is close to the residential area, the Contractor was reminded to implement the mitigation measures as far as practicable as recommended in the EM&A Programme		TCS00864/ 16/300/F04 58a
66	28-Mar- 21	30-Mar- 21	Road Quarry Site (between On Tat	Reside nt of Tai Fung House of On	Noise	EPD	K13/RE/ 0000708 6-21	A public complaint was received by EPD on 28 March 2021 regarding the construction noise generated from construction works at	In our investigation, CWSTVJV had followed that CNP for work during restricted hour and there should not be any non-compliance of Noise Control Ordinance. Nevertheless, some site areas had been handed over to other	no comment by IEC on 22 April 2021	TCS00864/ 16/300/F04 59

CEDD Contract No. NTE/07/2016
Environmental Team for Development of Anderson Road Quarry Site – Site Formation and Associated Infrastructure Works
Monthly Environmental Monitoring & Audit Report (July 2022)

Log ref.	Date of Compla int	Receive	Complaint Location		Complaint nature	Channel	Ref. no.	Complaint details	Follow up action	Log ref.	Date of Complaint
				Tai Estate				concerned about the	contract and construction noise generated from others is not controlled by the project. As a reminder, CWSTVJV should implement the mitigation measures as far as practicable as recommended in the EM&A Programme.		
67	11-Jun-2 1	11-Jun-2 1	Anderson Road Quarry Site		Noise	EPD	EPD Ref.: 13208-2 1	A public complaint was received by EPD on 11 June 2021 and complained about noise nuisance from multiple construction sites on Anderson Road Quarry Site. The complainant stated that there were noise nuisances from different construction sites from 0800 am to 1800 pm from Monday to Saturday without adaguate poice	6. In our investigation, CWSTVJV had implemented the noise mitigation measures to reduce to noise impact to the public. In response to the complaint, CWSTVJV had immediately installed a layer of acoustic barrier at boundary of concern works area. Since the works were conducted within approved normal hours with implementation of noise mitigation measures, there were no violation of legislative requirement.	no comment by IEC on 19 July 2021	TCS00864/ 16/300/F04 78a

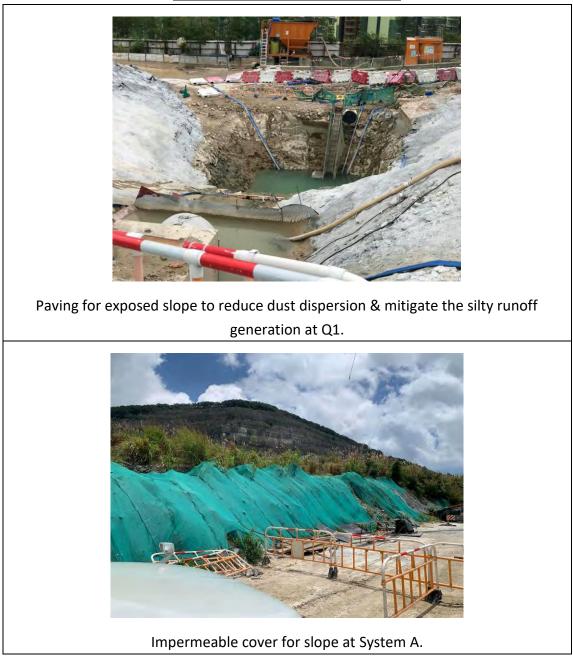
Log ref.	Compia	Receive	Complaint Location		Complaint nature	Channel	Ref. no.	Complaint details	Follow up action	Log ref.	Date of Complaint
								Tai Sheung Tok slope) and no mitigation measure was implemented for the rock breaking works.			
68	20&21/J une/21		Anderson Road Quarry Site	DSD	Water Quality	EPD	EPD Ref.: 13208-2 1	EPD received complaints from DSD on 20 and 21 July 2021 concerning about discharge of muddy water as found on Po Lam Road and at the drainage facility near Tin Hau temple.	• 5	by IEC on 6 August	TCS00864/ 16/300/F04 85b
69	14&16/S ep/21	15-Sep-	Anderson Road Quarry Site	DSD	Water Quality	EPD	NA	EPD received complaints from DSD on 14 Sep 2021 and 16 Sep 2021 concerning about discharge of muddy water as found at the catchpit SCH4003250 near Po	In our investigation, CWSTVJV had implemented the water quality mitigation measures to minimise the impact arising from the construction site. However, there were incidents of seepage of silty water at Q2 and Q3 and rectified actions were undertaken immediately. Having investigated, the incidents were considered very short	no comment by IEC on 6 October 2021	

Log ref.	Compla	Receive	Complaint Location	Compl ainant		Channel	Ref. no.	Complaint details	Follow up action	Log ref.	Date of Complaint
								Lam Road and catchpit SSH4001400 near Po Tat Tin Hau Temple.	term and would not generate large amount of muddy water. In view of the inclement weather condition and there were other major sources, it is considered that the complaints raised by DSD were not fully contributed byC1 Project. Nevertheless, CWSTVJV was advised to closely monitor the discharge quality to avoid non-compliance of water quality happened in the construction site. Moreover, to cope with the adverse weather condition in wet season, CWSTVJV should regularly review the drainage plan as needed.		
70	23/Sep/2 1	29-Sep-	Anderson Road Quarry Site	CEDD & EPD	Noise	CEDD &EPD		referred by 1823 to both CEDD and EPD on 23 September 2021. The complainant stated that the construction works at Anderson Road Quarry Site started before 7am, which generated construction noise and affecting the upper floor resident of	Our investigation revealed that there was no construction works under the Project undertaken during the concerned period by the complainant, and there were other concurrent contracts on Anderson Road Quarry Site and the contribution noise may be related to others. Therefore, it is considered that the noise complaint was unlikely to be related to the works under the Project. Nevertheless, CWSTVJV was reminded to properly maintain the noise mitigation measures as far as	No comment by IEC on 15 November 2021	

L0g ref	Compla	B ocoivo	Complaint Location	Compl ainant		Channel	Ref. no.	Complaint details	Follow up action	Log ref.	Date of Complaint
									practicable considering the construction site is relatively close to residential area.		
71	30/Mar/ 22	$1 \frac{1}{\Delta} nr/2$	Anderson Road Quarry Site	11211	Water Quality	DSD		2022 concerning about siltation and discharge of muddy water observed at the public drainage system at catchpit SSH4001400 near Tin Hau Temple and the site discharge	In our investigation, the Contractor had implemented the water quality mitigation measures to minimise the impact arising from the construction site. Based on the investigation findings, it is considered that the complaint was likely caused by the interfacing contractors under rainy days and not due to the works under the Project.	No comment	TCS00864/ 16/300/F05 40
72	14/Apr/2 2	$\frac{1}{\Delta nr}$	Anderson Road Quarry Site		Water Quality	DSD		DSD carried out site inspection at site discharge point at Po Lam Road on 12 April 2022 and observed discharge of muddy water at public drainage system. The case was then referred to CEDD and EPD to investigate the source of the muddy water discharge.	In our investigation, the Contractor had implemented the water quality mitigation measures to minimise the impact arising from the construction site. Based on the investigation findings, it is considered that the complaint was likely caused by the interfacing contractors and not due to the works under the Project.	No comment	TCS00864/ 16/300/F05 41
73	11/May/	25/May/	Anderson	DSD	Water	DSD		0	Based on the above findings and	No	TCS00864/

Log ref.	Date of Compla int	Receive	Complaint Location	Compl ainant		Channel	Ref. no.	Complaint details	Follow up action	Log ref.	Date of Complaint
	2022	2022	Road Quarry Site		Quality			muddy water observed entering Tsui Ping River, with similar situation observed at Tin	successive heavy rainstorm on 11 to 13 May 2022, it is considered the muddy water found in the concerned catchpit SSH4001400 near Tin Hau Temple and Po Lam Road on 11 to 13 May 2022 were likely caused by impact of rainstorm and partially contributed by the interfacing contractors at Sites R2-9 & R2-10.	by IEC on 13 June	16/300/F55 9
74	17/May/ 2022	30/May/	Anderson Road Quarry Site	DSD	Water Quality	DSD		May 2022 concerning about muddy water	Heavy rain led to large amount of storm runoff from roads and landscape into the public drainage system, which deteriorated the water quality in the drainage system. Besides, there were several construction sites at upstream of Tsui Ping River. It is considered that complaint mainly related to the interfacing contractor(s) and unlikely to have been caused by the project.	by IEC on	TCS00864/ 16/300/F56 2a
75	27/May/ 2022	9/Jun/20 22	Anderson Road Quarry Site	DSD	Water Quality	DSD		from DSD on 27 May 2022 concerning about muddy water observed entering Tsui Ping River, with similar situation observed at Tin Hau Temple and Po Lam Road.	Heavy rain led to large amount of storm runoff from roads and landscape into the public drainage system, which deteriorated the water quality in the drainage system. Besides, there were several construction sites at upstream of Tsui Ping River. It is considered that complaint mainly related to the interfacing contractor(s) and unlikely to have been caused by the project.		TCS00864/ 16/300/F56 3
76	6, 7, 8/ Jun/202	7, 8, 9/ Jun/202	Anderson Road	DSD	Water Quality	DSD		On 6 June 2022, DSD	As a matter of fact, heavy rain led to large amount of storm runoff from roads	Sent to EPD on	TCS00864/ 16/300/F56

Z:\Jobs\2016\TCS00864 (CEDD)\600\EM&A Report Submission\Monthly EM&A Report\2022\July 2022\R0579v2.docx


Log ref.	Date of Compla int		Complaint Location	Compl ainant	Complaint nature	Channel	Ref. no.	Complaint details	Follow up action	Log ref.	Date of Complaint
	2	2	Quarry Site					with bad odour was observed entering Tsui Ping River this morning at the upstream near junction of Kai Lim Road and Tsui Ping		21 June 2022	5
77	14/Jun/2 022	((')')	Anderson Road Quarry Site	DSD	Water Quality	DSD		DSD concerning muddy water discharge found at Tin Hau Temple and Po	As a matter of fact, heavy rain led to large amount of storm runoff from roads and landscape into the public drainage system, which deteriorated the water quality in the drainage system. Besides, there were several construction sites at upstream of Tsui Ping River. It is considered that complaint mainly related to the interfacing contractor(s) and unlikely to have been caused by the project.	Sent to	TCS00864/ 16/300/F56 6

Appendix N

Implementation Status for Water Quality Mitigation Measures

Water Quality Mitigation Measure

